Curriculum and Syllabus

M. Tech

Computer Science and Engineering

(Applicable for 2018-19 batch and onwards)

Department of Computer Science and Engineering School of Engineering and Technology, H. N. B. Garhwal University, Srinagar Garhwal, Uttarakhand (246174)

Curriculum

SEMESTER 1		
CODE NO.	COURSE	CREDITS
SET/CSE/MT/C101	Mathematical Foundation of Computer Science	3
SET/CSE/MT/C102	Advance Data Structures & Algorithms	3
SET/CSE/MT/C103	Advance Operating systems	3
SET/CSE/MT/C104	Advance Computer Organization and Architecture	3
SET/CSE/MT/C105	Advance Database Management System	3
SET/CSE/MT/CP11	Lab-1 (Based on C102 and C105)	3
		10
	Total	18
	SEMESTER 2	
CODE NO.	COURSE	CREDITS
SET/CSE/MT/C201	Compiler Design	3
SET/CSE/MT/C202	Wireless and Mobile Communication	3
SET/CSE/MT/C203	Cryptography and Network Security	3
SET/CSE/MT/C203	Digital Image Processing	3
SET/CSE/MT/C203	Cloud Computing	3
SET/CSE/MT/CP21	Lab -2 (Based on C202 and C203))	3
Total		18
SET/CSE/MT/SS1	Self-Study Course (from elective courses)	3
	SEMESTER 3	
CODE NO.	COURSE	CREDITS
	Elective 3	3
	Elective 4	3
SET/CSE/MT/S31	Seminar	2
SET/CSE MT/T301	Thesis work preliminary	10
	Total	18
SET/CSE/MT/SS2	Self-Study Course (from elective courses)	3
	SEMESTER 4	
CODE NO.	COURSE	CREDITS
SET/CSE/MT/T401	Thesis/Dissertation	18
· · · · · ·	Total	18
Grand Total 72		72

NOTE :

- (1) One hour of lecture/tutorial has a credit equivalence of 1. Three hours of lab is equivalent to one hour of lecture.
- (2) Students shall choose minimum two elective subjects in the third semester, from the following Table -1.
- (3) Students may also choose additional Electives, however the Overall CGPA of M. Tech. degree would be calculated based on the best 72 credits excluding self-study courses.
- (4) Student shall qualify oneself study courses from elective courses, in the 2nd or 3rd semesters. Grades obtained in self-study course will not be used for calculation of overall GPA / CGPA.
- (5) Student will be assigned a final year project/thesis guide (s) in the beginning of second semester.

(6) Final year project/thesis work shall be carried out during the 3^{rd} and 4^{th} semester. Final year project work would be evaluated in the end of 3^{rd} semester and 4^{th} semester. Student can undertake final year project individually under the guidance of a faculty or a group of faculty.

Table 1 – List of Electives		
S. No.	Code	Subject Name
1.	SET/CSE/MT/E 301	Data Warehousing and Data Mining
2.	SET/CSE/MT/E 302	Multicore Architecture
3.	SET/CSE/MT/E 303	Advanced Network Programming
4.	SET/CSE/MT/E 304	Embedded systems
5.	SET/CSE/MT/E 305	Parallel Computation and Applications
6.	SET/CSE/MT/E 306	Research Methodology
7.	SET/CSE/MT/E 307	High Performance Networks.
8.	SET/CSE/MT/E 308	Natural Language Processing
9.	SET/CSE/MT/E 309	Grid Computing
10.	SET/CSE/MT/E 310	Object Oriented Software Engineering.
11.	SET/CSE/MT/E 311	Computer Network Administration
12.	SET/CSE/MT/E 312	Bioinformatics
13.	SET/CSE/MT/E 313	Pattern Recognition
14.	SET/CSE/MT/E 314	Genetic Algorithms and Applications
15.	SET/CSE/MT/E 315	Modeling and Simulation
16.	SET/CSE/MT/E 316	Intrusion Detection
17.	SET/CSE/MT/E 317	Soft computing
18.	SET/CSE/MT/E 318	Blockchain Technology
19.	SET/CSE/MT/E 319	Internet of Things
20.	SET/CSE/MT/E 320	Quantum Computation

Thesis will be graded as follows:

S.No.	Grade	Condition
1	0	Two Publications from thesis in SCI indexed Journal.
2	A+	One Publication from thesis in SCI indexed Journal.
3	А	Publication from thesis in Scopus indexed Journal.
4	B+	Publication from thesis in Proceeding of conference which is Scopus indexed.
5	В	Presented paper in International Conference.
6	C/C+	Presented paper in National Conference.

First Semester

Mathematical Foundations of Computer Science- SET/CSE/MT/C101	
Module	Content
Introduction:	Mathematical notions of sets, sequences and tuples, functions and relations, Primitive
	recursive functions, computable functions, examples, graphs, strings and languages.
	Boolean logic - properties and representation, theorems and types of proofs,
	deductive, inductive, by construction, contradiction and counter-examples.
Number	Introduction to Number theory, Divisibility, modular arithmetic (addition modulo and
Theory:	multiplication modulo); Statements and applications of Euler and Fermat Theorems,
	Primitive Roots, Discrete Logarithms, Primarily Test, Finding Large primes,
	Definition of Elliptic Curves and their applications to Cryptography.
Finite	Introduction To Finite Automata: Alphabets and languages- Deterministic Finite
Automata:	Automata – Non- deterministic Finite Automata – Equivalence of Deterministic and
	Non-Finite Automata – Languages Accepted by Finite Automata – Finite Automata
	and Regular Expressions – Properties of Regular sets & Regular Languages and their
	applications.
Context Free	Context Free Languages: Context – Free Grammar – Regular Languages and Context-
Languages:	Free Grammar - Pushdown Automata - Pushdown Automata and Context-Free
	Grammar - Properties of Context-Free Languages - pushdown automata and
	Equivalence with Context Free Grammars.
Turing	Turing Machines: The Definition of Turing Machine - Computing with Turing
Machines:	Machines - Combining Turing Machines, , programming techniques for Turing
	Machines. Variants of Turing Machines, Restricted Turing Machines Universal
	Turing Machines. The Halting Problem, Decidable & un-decidable problems- Post
	Correspondence Problems.
Textbooks:	1. Introduction to Automata Theory, Languages and Computations – J.E. Hopcroft, &
	J.D. Ullman, Pearson Education Asia.
References:	1. Introduction to languages and theory of computation – John C. Martin (MGH)
	2. Discrete Mathematical structures with application to Computer Science – J.P. Tremblay and D. Mancher
	3 Introduction to Theory of Computation – Michael Sinser (Thomson Nrools/Cole)
	4 Cryptanalysis of number theoretic Cyphers Samuel S Wagstaff Ir Champan & Hall/CRC
	Press 2003.
	5. Network Security: The Complete Reference by Roberta Bragg, Mark Phodes – Ousley,
	Keith Strassberg TataMcGraw-Hill.

Advance Data Structures and Algorithm- SET/CSE/MT/C102	
Module Name	Content
Introduction to	Overview of Data Structure, pointers, parameters passing, templates, using
data structure	Matrices, Algorithm Analysis: Basics of time complexity estimates, General norms
and Algorithms	for running time calculation.
Lists, Stacks & Queues: Trees:	Abstract Data Types, Representation & implementation of ADT list, doubly linked list, Circular linked lists, Representation, Implementation and applications of ADT stack and Queue. Implementation and traversal of trees, Binary Trees and Binary search trees in C, Concepts of AVL Trees, Splay Trees and B-Trees. Hash Function, Separate chains, Open addressing, rehashing, Extendible Hashing.
Sorting Algorithms:	Sorting like insertion Sort, shell Sort, Heap Sort, Merge Sort, Quick Sort and Simple external sorting algorithm.
Greedy method and Dynamic Programming	General methods, Job sequencing with deadlines, Minimum spanning trees, Optimal merge patterns, knapsack Problem, All pair's shortest paths, Optimal binary search trees, Reliability design, Traveling salesman problem and flow shop scheduling.
Graph Algorithms:	Representation of graph Topological Sort, shortest-path Algorithm, Network flow problem, Minimum spanning tree algorithm, Applications of Depth – First search, Introduction to NP-Completeness.
Textbooks:	1. Data Structures & Algorithm Analysis in C++, Mark Allen Weiss. Second edition, Pearson Edition. Asia.
References:	 Data Structures & Algorithm in C++, Adam Drozdek. Vikas Publication House. Data Structure, Algorithm and OOP, Gregory L. Heileman (Tata Mc Graw Hill Edition). Data Structures, Algorithms and Applications in C++,Sartaj Sahni,Mc Graw-Hill International Edition.

Advance Operating Systems- SET/CSE/MT/C103		
Module Name	Content	
Introduction To	Types Of Operating Systems, Operating System Structures. Operating- System	
Operating Systems:	Services, System Calls, Virtual Machines, Operating System Design and	
	Implementation. Process Management: Process Concepts, Operations On	
	Processes, Cooperating Processes, Threads, Inter Process Communication, Process	
	Scheduling, Scheduling Algorithms, Multiple-Processor Scheduling. Thread	
	Scheduling.	
Process	The Critical Section Problem, Semaphores, And Classical Problems Of	
Synchronization &	Synchronization, Critical Regions, Monitors, Deadlocks,-System Model,	
Deadlocks:	Deadlocks Characterization, Methods For Handling Deadlocks, Deadlock-	
	Prevention, Avoidance, Detection and Recovery from Deadlocks.	
Memory Management	Logical Versus Physical Address Space, Paging And Segmentation, Virtual	
& File System	Memory, Demand Paging, Page Replacement Algorithms, Thrashing, File System	
Implementation:	Implementation -Access Methods, Directory Structure, Protection, File System	
	Structure, Allocation Methods, Free Space Management, Directory Management,	
	Device Drivers.	
Distributed Operating	Distributed System Goals, Types Of Distributed Systems, Styles & Architecture Of	
Systems:	Distributed Systems, Threads, Virtualization, Clients, Servers, Code Migration, and	
	Communication in Distributed Systems. Clock Synchronization, Logical Clocks,	
	Mutual Exclusion, Global Positioning Of Nodes, Data-Centric Consistency	
	Models, Client-Centric Consistency Models, Consistency Protocols.	
Fault Tolerance &	Introduction To Fault Tolerance, Process Resilience,, Reliable Client-Server	
Security:	Communication, Reliable Group Communication, Distributed Commit, Recovery,	
	Secure Channels, Access Control, Security Management.	
Case Study:	Overview Of UNIX, LINUX Operating systems	
Textbooks:	1) Silberschatz & Galvin, 'Operating System Concepts', Wiley.	
	2) "DISTRIBUTED SYSTEMS", Second edition, Andrew S.Tanenbaum, Maarten	
	Van teen.	
References	1) William Stallings-"Operating Systems"- 5th Edition - PHI	
	2) Charles Crowley, 'Operating Systems: A Design-Oriented Approach', Tata Hill	
	Co., 1998 edition.	
	3) Andrew S. Tanenbaum, 'Modern Operating Systems', 2nd edition, 1995, PHI.	
	4) Advanced Concepts in Operating systems. Distributed, Database and Multiprocessor	
	operaung systems, mukesn singnai, mianjan G.Sinvaratii, Tata meoraw Hill Edition.	

Advance Computer Organization and Architecture- SET/CSE/MT/C104	
Module Name	Content
Introduction to	Introduction of Register Transfer and Micro operations, Register Transfer Language,
Computer	Register Transfer, Bus and Memory Transfers, Arithmetic Micro operations, Logic Micro
Organization and	operations, Shift Micro operations, Arithmetic Logic Shift Unit.
Architecture:	
Basic Computer	Instruction Codes, Computer Registers, Computer Instructions, Timing and Control,
Organization and	Instruction Cycle, Memory- Reference Instructions, Input-Output and Interrupt, Complete
Design:	Computer Description, Design of Basic Computer, Design of Accumulator Logic.
Micro programmed	Control Memory, Address Sequencing, Micro program Example, Design of Control Unit.
Control:	Introduction, General Register Organization, Stack Organization, Instruction Formats,
	Addressing Modes, Data Transfer and Manipulation, Program Control, Reduced
	Instruction Set Computer(RISC)
Input/output	Peripheral Devices, I/O interface, Asynchronous data transfer, Modes of transfer, priority
Organization:	Interrupt, Direct memory access, Input-Output Processor (IOP), Serial Communication.
	Memory Organization: Memory Hierarchy, Main memory, Auxiliary memory, Associate
	Memory, Cache Memory, and Virtual memory, Memory Management Hardware.
Overview of	Evolution of Computer Systems, Parallelism in Uniprocessor System, Parallel Computer
Computer	Structures, Architectural Classification Schemes, Parallel Processing Applications.
Architecture:	Flynn's classifications – SISD, SIMD, MISD, MIMD, Examples from Vector & Array
	Processors, Performance comparison of algorithms for Scalar, Vector and Array
	Processors, Fundamentals of UMA, NUMA, NORMA architectures
Textbooks	1). Computer System Architecture, M. Morris Mano, Prentice Hall of India Pvt. Ltd., Third Edition, Sept. 2008.
	2) Computer Architecture and Parallel Processing, Kai Hwang and Faye A. Briggs,
	McGraw Hill, International Edition1985.
References	1. Computer Architecture and Organization, William Stallings, PHI Pvt. Ltd., Eastern
	Economy Edition, Sixth Edition, 2003.
	2. "Computer System Architecture", John. P. Hayes.
	3. Computer Architecture A quantitative approach 3rd edition John L. Hennessy & David
	A. Patterson Morgan Kufmann

Advance Database Management System- SET/CSE/MT/C105	
Module Name	Content
Introduction to	Database System Applications, Purpose of Database Systems, View of Data - Data
Database Systems:	Abstraction, Instances and Schemas, Data Models – the ER Model, Relational Model,
	other Models, Database Languages – DDL, DML, Database Access from Applications
	Programs, Transaction Management, Data Storage and Querying, Database Architecture,
	Database Users and Administrators, ER Diagrams, Relational Model: Introduction to the
	Relational Model - Integrity Constraints Over Relations, Enforcing Integrity constraints,
	Querying relational data, Logical data base Design, Introduction to Views, Altering Tables
	and Views, Relational Algebra, Basic SQL Queries, Nested Queries, Complex Integrity
	Constraints in SQL, Triggers.
Database Design	Introduction to Schema Refinement - Problems Caused by redundancy, Decompositions -
	Problem related to decomposition, Functional Dependencies - Reasoning about FDS,
	Normal Forms.
Transaction &	Transaction Management: The ACID Properties, Transactions and Schedules, Concurrent
Security	Execution of Transactions, Lock Based Concurrency Control, Deadlocks, Performance of
Management:	Locking, Transaction Support in SQL. Concurrency Control: Serializability, and
	recoverability, Introduction to Lock Management, Lock Conversions, Dealing with Dead
	Locks, Specialized Locking Techniques, Concurrency Control without Locking. Crash
	recovery: Introduction to Crash recovery, Introduction to ARIES, the Log, and Other
	Recovery related Structures, the Write-Ahead Log Protocol, Check pointing, recovering
	from a System Crash, Media recovery
Distributed	Distributed DBMS features and needs. Reference architecture. Levels of distribution
Database	transparency, replication. Distributed database design - fragmentation, allocation criteria.
	Distributed deadlocks. Time based and quorum based protocols. Comparison. Reliability-
	non-blocking commitment protocols.
Security Issues	Security and authorization, authorization in SQL, Encryption and authentication, Security
and Performance	issues in Oracle/DB2 Performance tuning, Performance benchmarks, standardization,
measure In	performance tuning in Oracle / IBM DB2
Databases	
Textbooks	1. Database System Concepts, Avi Silberschatz, Henry F. Korth, S. Sudarshan McGraw-
	Hill, SixthEdition,
References	1. Database Management Systems, Raghu Ramakrishnan, Johannes Gehrke, McGraw-Hill.

Practical - SET/CSE/MT/CP11

CP102: Data Structures & Algorithms

Prerequisites: Knowledge of C/C++ Programming and basic data structures is essential. The experiments will be based on the following Paper- C102

C105: Advance Database Management System

Prerequisites: Knowledge of C/C++ Programming is essential. The experiments will be based on the following paper: C105- Advance Database Management System.

Second Semester

Compiler Design- SET/CSE/MT/C201		
Module Name	Content	
Introduction to	Compiler & translators, Structure of compiler, Lexical Analyzer, Syntax analyzer,	
Compiler Design:	Intermediate code generator. Optimization, code generation, Error handling, compiler	
	writing tools, structures of high-level language, The Syntactic specification of	
	programming Languages.	
Lexical Analysis:	Lexical Analyzer, approaches to design of Lexical Analyzer, regular expression, finite	
	automata, language for specifying Lexical Analyzer, Implementation of a Lexical	
	Analyzer.	
Parsing	Parsers, Shift reduce parsing, operator - precedence parsing, Top-Down parsing,	
Technique:	predicative parsing. Technique2: LR parsers Constanction of SLR Parser, Constanction of	
	CLR Parser, Constanction of LALR Parser	
Syntax Directed	Syntax- directed translator schemes and implementation, intermediate code, postfix	
Translation:	notation, three address coding, quadruple & triple, translation of assignment statements,	
	Boolean expression, Conditional statements, Postfix translations, array reference,	
	Procedure calls, case statements, record structures.	
Code Optimization Sources of Optimization, Loop Optimization, DAG representation, Global Data I		
and Generation:	Analysis. Code Generation: Problems in code generation. Simple code generator, code	
	generator from DAG's, Peephole optimization, Brief description of Symbol tables, Error	
	detection and recovery, Runtime storage administration.	
Parallel Compilers	Motivation and overview, Structure of a Parallelzing compiler. Parallelism detection: data	
& Compliation for	dependence, direction vectors, loop carried and loop independent dependences.	
Distributed	Data partitioning, instruction scheduling, register allocation, machine optimization.	
wiachines	Dynamic compliation. Just in time (J11) compliers, Auto scheduling compliers.	
Toythooka	1 Introduction to Automate Theory Languages and Computations IE Honoroft &	
Textbooks	I. Infoduction to Automata Theory, Languages and Computations – J.E. Hoperon, &	
	2 Principles of compiler design by Alfred V Abo, D IIIIman	
References	1 Compiler Design Trembly and Sorauson Tata Mcgraw Hill	
inter circes	2 Systems programming by John J Donovan (chapter 8)	
	3 Theory of Computer science by K L P Mishra & N Chandra Sekhran (chapter 2.3.4)	
	4. Compiler Design in C – Allen I. Holub. PHI.	
	I	

Wireless and Mobile Communication-SET/CSE/MT/C202	
Module Name	Content
Introduction	Advantages and disadvantages of wireless networking, Evolution of Mobile Communication generations, Multiple Access Technologies- CDMA, FDMA, TDMA, Frequency reuse, Radio Propagation and Modeling, Challenges in mobile computing: Resource poorness, Bandwidth, energy, etc. Applications of mobile computing, Wireless and Mobile Computing Models, IEEE WLAN Protocols: IEEE 802.11/a/g/n & Bluetooth, Data Management Issues. Sensor Networks- Challenges, Architecture, and Applications.
Cellular Concepts	Cellular architecture, Frequency reuse, Channel assignment strategies, Handoff strategies, Interference and system capacity, Improving coverage and capacity in cellular systems, Spread spectrum Technologies, Protocols for digital cellular systems such as GSM, EDGE, GPRS, UTMS
Mobile Architecture	Mobile Network Layer: Mobile IP (Goals, assumptions, entities and terminology, IP packet delivery, agent advertisement and discovery, registration, tunneling and encapsulation, optimizations), Dynamic Host Configuration Protocol (DHCP)
Mobile IP:	Problem with Mobility, Terminology, Operation, Tunneling, Data transfer to the mobile system, Transport Control Protocol (TCP) Over wireless- Indirect TCP (I-TCP), Snoop TCP, Mobile TCP (M-TCP), Case Study of Client/Server architecture.
Mobile Ad-Hoc Networks	Overview, Properties of a MANET, spectrum of MANET applications, routing and various routing algorithms, security in MANETs. Routing protocols - Destination sequenced distance vector algorithm, Cluster based gateway switch routing, , Ad hoc on-demand routing, Fisheye routing protocol CBRP, Zonal routing algorithm
Textbooks	 Charles E. Perkins, Ad hoc Networks, Addison Wesley, 2008. Schiller J., Mobile Communications, Addison Wesley (2000). Stallings W., Wireless Communications and Networks, Pearson Education

Cryptography and Network Security-SET/CSE/MT/C203	
Module Name	Content
Introduction:	OSI Security Architecture - Classical Encryption techniques - Cipher
	Principles - Data Encryption Standard - Block Cipher Design Principles and Modes
	of Operation - Evaluation criteria for AES - AES Cipher - Triple DES - Placement of
	Encryption Function - Traffic Confidentiality
Public Key	Key Management - Diffie-Hellman key Exchange – Elliptic Curve Architecture and
Cryptography:	Cryptography - Introduction to Number Theory – Confidentiality using Symmetric
	Encryption - Public Key Cryptography and RSA.
Authentication	Authentication requirements - Authentication functions - Message Authentication
and Hash	Codes - Hash Functions - Security of Hash Functions and MACs - MD5 message
Function:	Digest algorithm - Secure Hash Algorithm -
	RIPEMD - HMAC Digital Signatures - Authentication Protocols - Digital Signature
	Standard.
Network	Authentication Applications: Kerberos - X.509 Authentication Service - Electronic
Security:	Mail Security - PGP - S/MIME - IP Security - Web Security. SYSTEM LEVEL
	SECURITY: Intrusion detection - password management - Viruses and related
	Threats - Virus Counter measures - Firewall Design Principles - Trusted Systems.
Security	Legal, Privacy and Ethical issues in digital security. Program and data Protection by
Metrics:	patents, copyrights and trademarks, information and the law, computer crime,
	privacy, Ethical issues in digital security and codes of professional ethics.
Textbooks	1. Cryptography and network security- principles and practice – William Stallings (3
	rd Edition, Person Prentice Hall).
	2. Network Security private communication in a practice – char tic Kaufman, Radio
	Perl man, Mike spicier (2 nd Edition Pearson Print ice Hall)
	3. Cryptography and network security – Atul Kahate (TMGH)

Digital Image Processing- SET/CSE/MT/C204	
	L T P
	3 10
Module Name	Content
Introduction	Introduction - Elements of visual perception, Steps in Image Processing Systems,
to Image	image Acquisition – Sampling and Quantization – Pixel Relationships – Colour
Processing:	Fundamentals and Models, File Formats. Introduction to the Mathematical tools.
Image	Spatial Domain Gray level Transformations Histogram Processing Spatial Filtering
Enhancement	– Smoothing and Sharpening. Frequency Domain: Filtering in Frequency Domain –
and	DFT, FFT, DCT, Smoothing and Sharpening filters - Homomorphic Filtering.,
Restoration:	Noise models, Constrained and Unconstrained restoration models.
Image	3D-Detection of Discontinuities - Edge Operators- Edge Linking and Boundary
Segmentation	Detection - Thresholding - Region Based Segmentation - Motion Segmentation,
and Feature	Feature Analysis and Extraction.
Analysis:	
Multi	Image Pyramids – Multi resolution expansion – Wavelet Transforms, Fast Wavelet
Resolution	transforms, Wavelet Packets. Image Compression: Fundamentals - Models -
Analysis and	Elements of Information Theory – Error Free Compression – Lossy Compression –
Compressions	Compression Standards – JPEG/MPEG.
:	
Applications	Representation and Description, Image Recognition- Image Understanding - Image
of Image	Classification – Video Motion Analysis – Image Fusion – Steganography – Colour
Processing:	Image Processing.
Textbooks	1. Rafael C.Gonzalez and Richard E.Woods, "Digital Image Processing", Third
	Edition, Pearson Education, 2008.
	2. Milan Sonka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis
	and Machine Vision", Third Edition, Third Edition, Brooks Cole, 2008.
	3. Anil K.Jain, "Fundamentals of Digital Image Processing", Prentice-Hall India,
	2007. A Madhuri A Joshi 'Digital Image Processing: An Algorithmic Approach"
	Prentice-Hall India 2006
	5 Rafael C Gonzalez Richard F Woods and Steven I Eddins "Digital Image
	Processing Using MATLAR" First Edition Pearson Education 2004
	recessing come in right , rust bandon, rearson bacanon, 2007.

Cloud Computing SET/CSE/MT/C205	
	L T P
	3 1 0
Module Name	Content
Introduction to	Evolution of Cloud Computing -System Models for Distributed and Cloud Computing -
Cloud	NIST Cloud Computing Reference Architecture -IaaS – On-demand Provisioning – Elasticity
Computing:	in Cloud – E.g.of IaaS Providers - PaaS – E.g. of PaaS Providers - SaaS – E.g. of SaaS
	Providers – Public, Private and Hybrid Clouds.
Virtualization	Definition, Understanding and Benefits of Virtualization. Implementation Level of
Technology	Virtualization, Virtualization Structure/Tools and Mechanisms, Hypervisor, VMware, KVM,
	Xen. Virtualization of CPU, Memory, I/O Devices, Virtual Cluster and Resources
	Management, SLA & Power consumption management, Virtualization of Server.VM
	Migration
Networking	Ubiquitous Cloud and the Internet of Things. Cloud Computing Architecture: Cloud
Support for	Reference Model, Layer and Types of Clouds, Services models, Data center Design and
Cloud	interconnection Network, Architectural design of Computer and Storage Clouds.
Computing	
Cloud	Web-Based Application, Pros and Cons of Cloud Service Development, Types of Cloud
Applications	Service Development, Software as a Service, Platform as a Service, Web Services, On-
	Demand Computing, Discovering Cloud Services, Development Services and Tools, Amazon
	Ec2, Google App Engine, IBM Clouds
Security in the	Security Overview – Cloud Security Challenges – Software-as-a-Service Security– Security
Cloud	Governance – Risk Management – Security Monitoring – Security Architecture Design – Data
	Security – Application Security – Virtual Machine Security
Case Study	Case Study and analysis of cloud computing environment using cloud simulator toolkit
Textbooks	1. Raj Kumar Buyya, "Cloud Computing: Principles and Paradigms, wiley
	2. Barrie Sosinsky, "Cloud Computing Bible", Wiley Publishers
	3. John W.Rittinghouse and James F.Ransome, "Cloud Computing: Implementation

List of Electives Subjects

Data Warehousing and Data Mining - SET/CSE/MT/E301	
	L T P
	3 10
Module Name	Content
Module 1	Data Warehousing and Business Analysis: - Data warehousing Components –Building a Data warehouse – Mapping the Data Warehouse to a Multiprocessor Architecture –DBMS Schemas for Decision Support – Data Extraction, Cleanup, and Transformation Tools –Metadata – reporting – Query tools and Applications – Online Analytical Processing (OLAP) – OLAP and Multidimensional Data Analysis.
Module 2	Data Mining: - Data Mining Functionalities – Data Preprocessing – Data Cleaning – Data Integration and Transformation – Data Reduction – Data Discretization and Concept Hierarchy Generation. Association Rule Mining: - Efficient and Scalable Frequent Item set Mining Methods – Mining Various Kinds of Association Rules – Association Mining to Correlation Analysis – Constraint- Based Association Mining.
Module 3	Classification and Prediction: - Issues Regarding Classification and Prediction – Classification by Decision Tree Introduction – Bayesian Classification – Rule Based Classification – Classification by Back propagation – Support Vector Machines – Associative Classification – Lazy Learners – Other Classification Methods – Prediction – Accuracy and Error Measures – Evaluating the Accuracy of a Classifier or Predictor – Ensemble Methods – Model Section
Module 4	Cluster Analysis: - Types of Data in Cluster Analysis – A Categorization of Major Clustering Methods – Partitioning Methods – Hierarchical methods – Density-Based Methods – Grid-Based Methods – Model-Based Clustering Methods – Clustering High- Dimensional Data – Constraint-Based Cluster Analysis – Outlier Analysis.
Module 5	Mining Object, Spatial, Multimedia, Text and Web Data: Multidimensional Analysis and Descriptive Mining of Complex Data Objects – Spatial Data Mining Multimedia Data Mining – Text Mining – Mining the World Wide Web.
Textbooks	 Jiawei Han and Micheline Kamber "Data Mining Concepts and Techniques" Second Edition, Elsevier, Reprinted 2008. Alex Berson and Stephen J. Smith "Data Warehousing, Data Mining & OLAP", Tata McGraw – Hill Edition, Tenth Reprint 2007. K.P. Soman, Shyam Diwakar and V. Ajay "Insight into Data mining Theory and Practice", Easter Economy Edition, Prentice Hall of India, 2006.

	Multicore Architecture - SET/CSE/MT/E 302
	L T P 3 10
Module Name	Content
Module 1	Motivation for Concurrency in software, Parallel Computing Platforms, Parallel Computing in Microprocessors, Differentiating Multi-core Architectures from Hyper- Threading Technology, Multi-threading on Single-Core versus Multi Core Platforms Understanding Performance, Amdahl's Law, Growing Returns: Gustafson's Law. System Overview of Threading: Defining Threads, System View of Threads, Threading above the Operating System, Threads inside the OS, Threads inside the Hardware, What Happens When a Thread Is Created, Application Programming Models and Threading, Virtual Environment: VMs and Platforms, Runtime Virtualization, System Virtualization
Module 2	Fundamental Concepts of Parallel Programming: Designing for Threads, Task Decomposition, Data Decomposition, Data Flow Decomposition, Implications of Different Decompositions, Challenges You'll Face, Parallel Programming Patterns, A Motivating Problem: Error Diffusion, Analysis of the Error Diffusion Algorithm, An Alternate Approach: Parallel Error Diffusion, Other Alternatives.
Module 3	Threading and Parallel Programming Constructs: Synchronization, Critical Sections, Deadlock, Synchronization Primitives, Semaphores, Locks, Condition Variables, Messages, and Flow Control- based Concepts, Fence, Barrier and Implementation-dependent Threading Features. Threading APIs : Threading APIs for Microsoft Windows, Win32/MFC Thread APIs, Threading APIs for Microsoft. NET Framework, Creating Threads, Managing Threads, Thread Pools, Thread Synchronization, POSIX Threads, Creating Threads, Managing Threads, Thread Synchronization, Signaling, Compilation and Linking.
Module 4	OpenMP: A Portable Solution for Threading: Challenges in Threading a Loop, Loop-carried Dependence, Data-race Conditions, Managing Shared and Private Data, Loop Scheduling and Portioning, Effective Use of Reductions, Minimizing Threading Overhead, Work-sharing Sections, Performance-oriented Programming, Using Barrier and No wait, Interleaving Single thread and Multi-thread Execution, Data Copy-in and Copy-out, Protecting Updates of Shared Variables, Intel Task queuing Extension to OpenMP, OpenMP Library Functions, OpenMP Environment Variables, Compilation, Debugging, performance.
Module 5	Solutions to Common Parallel Programming Problems: Too Many Threads, Data Races, Deadlocks, and Live Locks, Deadlock, Heavily Contended Locks, Priority Inversion, Solutions for Heavily Contended Locks, Non-blocking Algorithms, ABA Problem, Cache Line Ping ponging, Memory Reclamation Problem, Recommendations, Thread-safe Functions and Libraries, Memory Issues, Bandwidth, Working in the Cache, Memory Contention, Cache related Issues, False Sharing, Memory Consistency, Current IA-32 Architecture, Itanium Architecture, High-level Languages, Avoiding Pipeline Stalls on IA-32, Data Organization for High Performance.
Textbooks	 Hennessey & Pateterson, "Computer Architecture A Quantitative Approach", Harcourt Asia, Morgan Kaufmann, 1999. Joseph JaJa, Introduction to Parallel Algorithms, Addison-Wesley, 1992. IBM Journals for Power 5, Power 6 and Cell Broadband engine architecture. Multicore Programming, Increased Performance through Software Multi-threading by Shameem Akhter and Jason Roberts, Intel Press, 2006

Advanced Network Programming - SET/CSE/MT/C303

	3 1 0
Module Name	Content
Module 1	Java Fundamentals: Java I/O streaming - filter and pipe streams - Byte Code interpretation - reflection - Dynamic Reflexive Classes - Threading - Java Native interfaces- Swing.
Module 2	Network Programming in Java: Sockets - secure sockets - custom sockets - UDP datagrams - multicast sockets - URL classes - Reading Data from the server - writing data - configuring the connection - Reading the header - telnet application - Java Messaging services.
Module 3	Applications in Distributed Environment: Remote method Invocation - activation models - RMI custom sockets - Object Serialization - RMI - IIOP implementation - CORBA - IDL technology - Naming Services - CORBA programming Models - JAR file creation.
Module 4	Multi-tier Application Development: Server side programming - servlets - Java Server Pages - Applet to Applet communication - applet to Servlet communication - JDBC - Using BLOB and CLOB objects - storing Multimedia data into databases – Multimedia streaming applications - Java Media Framework.
Module 5	Enterprise Applications: Server Side Component Architecture - Introduction to J2EE - Session Beans - Entity Beans - Persistent Entity Beans – Transactions.
Textbooks	 Elliotte Rusty Harold, "Java Network Programming", O'Reilly publishers, 3rd Edition, 2004 Hortsmann & Cornell, "CORE JAVA 2 ADVANCED FEATURES, VOL II", Pearson Education, 2002. (UNIT I and UNIT IV) Patrick Naughton, "COMPLETE REFERENCE: JAVA2", Tata McGraw-Hill, 2003

Embedded Systems- SET/CSE/MT/E 304	
	L T P 3 10
Module Name	Content
Module 1	Introduction to Embedded Systems: Definition and Classification – Overview of Processors and hardware units in an embedded system – Software embedded into the system – Exemplary Embedded Systems – Embedded Systems on a Chip (SoC) and the use of VLSI designed circuits
Module 2	Devices and Buses for Devices Network: I/O Devices - Device I/O Types and Examples – Synchronous - Iso-synchronous and Asynchronous Communications from Serial Devices - Examples of Internal Serial-Communication Devices - UART and HDLC - Parallel Port Devices - Sophisticated interfacing features in Devices/Ports- Timer and Counting Devices - '12C', 'USB', 'CAN' and advanced I/O Serial high speed buses- ISA, PCI, PCI-X, cPCI and advanced buses.
Module 3	Embedded Programming: Programming in assembly language (ALP) vs. High Level Language - C Program Elements, Macros and functions -Use of Pointers - NULL Pointers - Use of Function Calls – Multiple function calls in a Cyclic Order in the Main Function Pointers – Function Queues and Interrupt Service Routines Queues Pointers – Concepts of EMBEDDED PROGRAMMING in C++ - Objected Oriented Programming – Embedded Programming in C++, 'C' Program compilers – Cross compiler – Optimization of memory codes.
Module 4	Real Time Operating Systems – Part – 1 OS Services – Interrupt Routines Handling, Task scheduling models - Handling of task scheduling and latency and deadlines as performance metrics - Inter Process Communication And Synchronisation – Shared data problem – Use of Semaphore(s) – Priority Inversion Problem and Deadlock Situations – Inter Process Communications using Signals – Semaphore Flag or mutex as Resource key – Message Queues – Mailboxes – Pipes – Virtual (Logical) Sockets – RPCs.
Module 5	Real Time Operating Systems – Part – 2 Study of RTOS, VxWorks - Basic Features - Task Management Library at the System - Library Header File - VxWorks System Functions and System Tasks - Inter Process (Task) Communication Functions - Case Study of Coding for Sending Application Layer Byte Streams on a TCP/IP Network Using RTOS Vxworks
Textbooks	 Rajkamal, Embedded Systems Architecture, Programming and Design, TATA McGraw Hill, First reprint 2003 David E.Simon, An Embedded Software Primer, Pearson Education Asia, FirstIndian Reprint 2000.

Parallel Computation and Applications- SET/CSE/MT/E 305

Module Name	Content
Module 1	Introduction to Parallel Processing Criteria for judging the architecture, Architectural classification schemes, Trends towards parallel processing, Parallelism in uni processor systems, Parallel Computer Structure, Applications of parallel processing Principles of Pipelining - Principles of Linear and non-linear pipelining, classification of pipeline processors, general pipelines and reservation tables, Interleaved memory organization.
Module 2	Structures and algorithms for Array Processors - SIMD array processors: SIMD Computer organization, Masking and data routing mechanisms, SIMD interconnection networks: static v/s dynamic, mesh connected ILLIAC network, Barrel Shifter network, Shffle-exchange and omega network.
Module 3	Multiprocessor Architecture - Functional structures, UMA and NUMA multiprocessors. Interconnection Networks: Time shared or common buses, Bus arbitration algorithm, Cross bar switch and multiport memories, Comparison of multiprocessor interconnection structure, multistage networks for multiprocessors. Algorithm Analysis - Mathematical background, What to analyze, Running time calculation, Logarithms in Running time
Module 4	Algorithm design techniques - Greedy algorithms, Simple Scheduling algorithms, Multiprocessor case, Huffman code analysis, Bin packing algorithms, Back tracking algorithms, Turnpike reconstruction algorithm Parallel processing terminology - Speed up, scaled speed up and parallelizability
Module 5	Elementary parallel algorithms - Hypercube SIMD model, Shuffle-exchange SIMD model, 2-D mesh SIMD, UMA multiprocessor, Broadcast Matrix multiplication - Algorithms for Processor arrays, Algorithms for multiprocessors and multicomputers. Sorting - Lower bounds on parallel sorting, Odd-Even transposition sort
Textbooks	1. Kai hwang and Fave A. Briggs, Computer Architecture and Parallel Processing
	 McGraw Hill Series. Kaihwang, Advanced Computer Architecture – Parallelism, Scalability, Programmability. Michael J. Quinn, Parallel Computing – Theory and Practice – McGraw Hill Publication. Mark Allen Weiss- Data Structures and Algorithm Analysis in C – Benjamin/Cummings Publication.

Research Methodology - SET/CSE/MT/E 306

	3 10
Module Name	Content
Introduction	Objectives of Research, Types of Research, Research Methods and Methodology, Defining aResearch Problem, Techniques involved in Defining a Problem
Research Design	Need for Research Design, Features of Good Design, Different Research Designs, Basic Principles of Experimental Designs, Sampling Design, Steps in Sampling Design, Types of Sampling Design, Sampling Fundamentals, Estimation, Sample size Determination, Random sampling
Measurement	Measurement in Research, Measurement Scales, Sources in Error, Techniques of
&Scaling	Developing Measurement Tools, Scaling, Meaning of Scale, Scale Construction
Techniques	Techniques
Methods of Data	Collection of Primary and Secondary Data, Selection of appropriate method, Data
Collection and	Processing Operations, Elements of Analysis, Statistics in Research, Measures of
analysis	Dispersion, Measures of Skewness, Regression Analysis, Correlation
Hypothesis	Basic concepts, Tests for Hypotheses I and II, Important parameters, Limitations of
Techniques,	the tests of Hypotheses, Chi-square Test, Comparing Variance, As a non-
Parametric	parametric Test, Conversion of Chi to Phi, Caution in using Chi-square test
standard test	
Analysis Variance	ANOVA, One way ANOVA, Iwo Way ANOVA, ANOCOVA, Assumptions in
and Co-variance	Anocova, Multivariate Analysis Technique, Classification of Multivariate Analysis, factor Analysis, R-type Q Type factor Analysis, Path Analysis
Textbooks	 "Research Methodology", C.R. Kothari, Wiley Eastern. "Formulation of Hypothesis", Willkinson K.P, L Bhandarkar, Hymalaya
	Publication, Bombay.
	3. "Research in Education", John W Best and V. Kahn, PHI Publication.
	4. "Research Methodology- A step by step guide for beginners", Ranjit Kumar, Pearson Education
	5. "Management Research Methodology-Integration of principles methods and
	Techniques", K.N.Krishnaswami and others, Pearson Education.

High Performance Networks - SET/CSE/MT/E 307	
	LTP
	3 1 0
Module Name	Content
Module 1	Basics of Networks: telephone, Cable television and Wireless network, networking principles, Digitalization: Service integration, network services and layered architecture, traffic characterization and QOS, networks services: network elements and network mechanisms.
Module 2	Packet switched networks: OSI and IP models: Ethernet (IEEE 802.3); Token Ring (IEEE 802.5), FDDI, DQDB, frame relay, SMDS Internet working with SMDS.
Module 3	Internet and TCP/IP networks: Overview internet protocol; TCP and VDP; performance of TCP/IP networks circuit switched networks: SONET; DWDM, Fiber to home, DSL. Intelligent networks, CATV.
Module 4	ATM and wireless networks: Main features- addressing, signaling and routing; ATM header structure-adaptation layer, management and control; BISDN; Interworking with ATM ,Wireless channel, link level design, channel access; Network design and wireless networks
Module 5	Optical networks and switching: Optical links- WDM systems, cross-connects ,optical LAN's, optical paths and networks; TDS and SDS: modular switch designs-Packets switching, distributed, shared, input and output buffers.
	1
Textbooks	 Jean warland and Pravin Varaiya,High,Performance Communication Networks,2nd Edition,Harcourt and Morgan Kauffman,London,2000 Leon Gracia,Widjaja,Communication Networks,Tata McGraw Hill,New Delhi,2000 Sumit Kasera,Pankaj Sethi,ATM Networks,Tata McGraw Hill,New Delhi,2000 Behrouz. Forouzan,Data Communication and Networking,Tata McGraw Hill,New Delhi,2000

Natural Language Processing - SET/CSE/MT/E 308

	3 10
Module Name	Content
	Introduction: Knowledge in speech and language processing - Ambiguity - Models and Algorithms - Language, Thought and Understanding. Regular Expressions and automata: Regular expressions -
Modulo 1	Finite-State automata. Morphology and Finite-State Transducers: Survey of English morphology -
Module 1	Finite-State Morphological parsing - Combining FST lexicon and rules - Lexicon-Free FSTs: The
	porter stammer - Human morphological processing
Module 2	Syntax: Word classes and part-of-speech tagging: English word classes - Tagsets for English - Part-
	Transformation-based tagging - Other issues Context-Free Grammars for English: Constituency
	- Context-Free rules and trees - Sentence-level constructions - The noun phrase - Coordination -
	Agreement - The verb phase and sub categorization - Auxiliaries - Spoken language syntax -
	Grammars equivalence and normal form - Finite-State and Context-Free grammars - Grammars
	and human processing. Parsing with Context-Free Grammars: Parsing as search - A Basic Top-
	Down parser - Problems with the basic Top-Down parser - The early algorithm - Finite- State parsing
	incurous.
Module 3	Advanced Features and Syntax. Features and Unification: Feature structures - Unification of
	feature structures - Features structures in the grammar - Implementing unification - Parsing with
	unification constraints - Types and Inheritance. Lexicalized and Probabilistic Parsing: Probabilistic
	context-free grammar - problems with PCFGs - Probabilistic lexicalized CFGs - Dependency
	Grammars - Human parsing.
Module 4	Semantic. Representing Meaning: Computational desiderata for representations -Meaning
	structure of language - First order predicate calculus - Some linguistically relevant concepts -
	Syntax-Driven semantic analysis - Attachments for a fragment of English - Integrating semantic
	analysis into the early parser - Idioms and compositionality - Robust semantic analysis. Lexical
	semantics: relational among lexemes and their senses - WordNet: A database of lexical relations
	- The Internal structure of words - Creativity and the lexicon.
Module 5	Applications Word Sense Disambiguation and Information Retrieval: Selection restriction-based
	disambiguation - Robust word sense disambiguation - Information retrieval - other information
	retrieval tasks. Natural Language Generation: Introduction to language generation - Architecture for
	generation - Surface realization – Discourse planning - Other issues. Machine Translation: Language
	similarities and differences - The transfer metaphor - The interlingua idea: Using meaning - Direct translation – Using statistical techniques - Usability and system development
	duisiation complete complete county and system development
Textbooks	1. James A Natural language Understanding 2e, Pearson Education
	2. Bharati A., Sangal R., Chaitanya V Natural language processing: a Paninian perspective,
	PHI, 2000.
	3. Siddiqui T., Tiwary U. S., Natural language processing and Information retrieval, OUP,2008

Grid Computing - SET/CSE/MT/E 309

	310
Module Name	Content
Module 1	Grid Computing: Introduction - Definition - Scope of grid computing.
Module 2	Grid Computing Initiatives: Grid Computing Organizations and their roles – Grid Computing analog – Grid Computing road map.
Module 3	Grid Computing Applications: Merging the Grid sources – Architecture with the Web Devices Architecture.
Module 4	Technologies: OGSA – Sample use cases – OGSA platform components – OGSI – OGSA Basic Services
Module 5	Grid Computing Tool Kits Globus Toolkit – Architecture, Programming model, High level services – OGSI .Net middleware Solutions.
Textbooks	 1.Joshy Joseph & Craig Fellenstein, "Grid Computing", PHI, PTR-2003. 2.Ahmar Abbas, "Grid Computing: A Practical Guide to technology and Applications", Charles River media – 2003.

Object Oriented Software Engineering- SET/CSE/MT/E 310	
	L T P
	3 1 0
Module Name	Content
Module 1	System Concepts – Project Organization – Communication – Project Management.
Module 2	Life cycle models - Unified Process - Iterative and Incremental - Workflow - Agile
	Processes.
Module 3	Requirements Elicitation – Use Cases – Unified Modeling Language, Tools – Analysis Object
	Model (Domain Model) - Analysis Dynamic Models - Non-functional requirements -
	Analysis Patterns.
Module 4	System Design, Architecture – Design Principles - Design Patterns – Dynamic Object
	Modeling – Static Object Modeling – Interface Specification – Object Constraint Language.
Module 5	Mapping Design (Models) to Code – Testing - Usability – Deployment – Configuration
	Management – Maintenance
Textbooks	1. Bernd Bruegge, Alan H Dutoit, Object-Oriented Software Engineering, 2 nd Ed, Pearson Education,
	2004.
	2. Craig Larman, Applying UML and Patterns 3rd ed, Pearson Education, 2005.
	3. Stephen Schach, Software Engineering 7th Ed, McGraw-Hill, 2007.
	4. Ivar Jacobson, Grady Booch, James Rumbaugh, The Unified Software Development
	Process, Pearson Education, 1999.
	5. Alistair Cockburn, Agile Software Development 2nd ed, Pearson Education, 2007.

Computer Network Administrator - SET/CSE/MT/E 311

Module Name	Content
Module 1	Data Communication and network management overview: Analogy of telephone network management, Data and telecommunication network, distributed computing environment, TCP/IP based networks– Internet and intranet, communication protocols and standards, challenges of information technology manager Network management –goals, organization and functions, network and system management, network management system platform, current status and future of network management.
Module 2	Basic foundation: Standards, models and languages: Network management standards, network management model, organization model, information model, communication model, ASN.1, Encoding structure, macros, and functional model.
Module 3	SNMP 1 network management: Organization and information models: Managed network, International organization and standard SNMP model, organization model, system overview, information models
Module 4	SNMP v1 network management: Communication and functional models, SNMP model, functional model, Major changes in SNMP v2 and v3 SNMP Management: RMON –Remote monitoring, RMON, SMI & MIB, RMON1, RMOPN2, ATM Remote monitoring, case study of internet traffic using RMON.
Module 5	Network management tools and systems: network management tools, network statistics measurement systems, network management systems, commercial network management systems, System management, Enterprise management solutions.
Textbooks	1.Network Management principles and practice Mani Subramanian (Pearson Edition)
	2. SNMP – SNMPv2 , SNMPv3 & RMON 1 – William Stalling (Pearson Edition)
	3. Network Administration – Steve Wisniewski

Bioinformatics- SET/CSE/MT/E 312	
Madada Nasara	3 10
Module Name	Content
Module 1	Fundamentals of Biological Systems: Introduction to cells: Structure of prokaryotic and eukaryotic cells. Cell organelles and their functions. Molecules of life: Introduction to carbohydrates, proteins, lipids and nucleic acids – Different structural forms and functional organizations. DNA replication, transcription and translation. Gene regulation.
Module 2	Sequence Analysis: Introduction to Sequence alignment, Substitution matrices, Scoring matrices –PAM and BLOSUM. Local and Global alignment concepts, dot plot, dynamic programming methodology, Multiple sequence alignment- Progressive alignment. Database searches for homologous sequences – FASTA and BLAST versions.
Module 3	Genomics and Proteomics: Functional Genomics: Gene expression analysis by cDNA micro arrays, SAGE, Strategies for generating ESTs and full length inserts; EST clustering and assembly; EST databases- DBEST, UNIGENE Proteomics: Protein and RNA structure prediction, polypeptic composition, secondary and tertiary structure, algorithms for modeling protein folding, structure prediction, proteomics, protein classification, experimental techniques, ligand screening, post-translational modification prediction.
Module 4	Computer Aided Drug Design: Introduction to the concepts of molecular modeling. Molecular structure and internal energy. Macromolecular modeling. Design of ligands for known macromolecular target sites. Drug – receptor interactions. Classical SAR/QSAR studies and their implications to the 3-D modeler. Molecular Docking. Structure-based drug design for all classes of targets.
Textbooks	 Andreqas D. Baxevanis, B. F. Francis Ouellette. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins John Wiley and Sons, New York (1998). C. Rastogi, Namita Mendiratta, Parag Rastogi. Bioinformatics-concepts, skills, Applications Bioinformatics Sequence and Genome Analysis. 2001. David W. Mount. Cold Spring Harbor laboratory Press. Andrew, R. Leach Molecular modeling: Principles and applications Prentice Hall Publications.

Pattern Recognition- SET/CSE/MT/E 313

Module Name	Content
Module 1	Pattern Classifier: Overview of pattern recognition - Discriminant functions - Supervised learning - Parametric estimation - Maximum likelihood estimation - Bayesian parameter estimation- Perceptron algorithm - LMSE algorithm - Problems with Bayes approach - Pattern classification by distance functions - Minimum distance pattern classifier.
Module 2	Unsupervised Classification: Clustering for unsupervised learning and classification - Clustering concept - C-means algorithm – Hierarchical clustering procedures - Graph theoretic approach to pattern clustering - Validity of clustering solutions.
Module 3	Structural Pattern Recognition Elements of formal grammars - String generation as pattern description - Recognition of syntactic description - Parsing -Stochastic grammars and applications - Graph based structural representation.
Module 4	Feature Extraction and Selection: Entropy minimization - Karhunen - Loeve transformation - Feature selection through functions approximation - Binary feature selection.
Module 5	Recent advances: Neural network structures for Pattern Recognition - Neural network based Pattern associators – Unsupervised learning in neural Pattern Recognition - Self organizing networks - Fuzzy logic - Fuzzy pattern classifiers - Pattern classification using Genetic Algorithms.
Textbooks	 Robert J.Schalkoff, Pattern Recognition: Statistical, Structural and Neural Approaches, John Wiley & Sons Inc., New York, 1992. Tou and Gonzales, Pattern Recognition Principles, Wesley Publication Company, London, 1974. Duda R.O., and Hart.P.E., Pattern Classification and Scene Analysis, Wiley, New York, 1973. Morton Nadier and Eric Smith P., Pattern Recognition Engineering, John Wiley & Sons, New York, 1993.

Genetic Algorithms and Applications- SET/CSE/MT/E 314

	3 1 0
Module Name	Content
Module 1	Fundamentals of genetic algorithm: A brief history of evolutionary computation- biological terminology-search space -encoding, reproduction-elements of genetic algorithm-genetic modeling-comparison of GA and traditional search methods.
Module 2	Genetic Technology: steady state algorithm - fitness scaling - inversion. Genetic programming - Genetic Algorithm in problem solving
Module 3	Genetic Algorithm in engineering and optimization-natural evolution-simulated annealing and Tabu search. Genetic Algorithm in scientific models and theoretical foundations.
Module 4	Implementing a Genetic Algorithm – computer implementation - low level operator and knowledge based techniques in Genetic Algorithm.
Module 5	Applications of Genetic based machine learning-Genetic Algorithm and parallel processors, composite laminates, constraint optimization, multilevel optimization, real life problem.
	Γ
Textbooks	 Melanie Mitchell, 'An introduction to Genetic Algorithm', Prentice-Hall of India,New Delhi, Edition: 2004 David.E.Golberg, 'Genetic algorithms in search, optimization and machine learning',Addition-Wesley-1999 S.Rajasekaran G.A Vijayalakshmi Pai,'Neural Networks, Fuzzy logic and Genetic
	Algorithms, Synthesis and Applications', Prentice Hall of India, New Delhi-2003.4. Nils.J.Nilsson,'Artificial Intelligence- A new synthesis', Original edition-1999.

Mo	deling and Simulation- SET/CSE/MT/E 315 L T P
	3 1 0
Module	Content
Name	
Introduction	System - ways to analyze the system - Model - types of models -
	Simulation – Definition – Types of simulation models – steps involved
	in simulation – Advantages & Disadvantages. Parameter estimation –
	estimator – properties – estimate – point estimate – confidence interval
	estimates – independent – dependent – hypothesis – types of hypothesis-
	steps – types 1& 2 errors – Framing – strong law of large numbers
Building of	Building of Simulation model – validation – verification – credibility –
Simulation	their timing – principles of valid simulation Modeling – Techniques for
model	verification – statistical procedures for developing credible model.
	Modeling of stochastic input elements – importance – various procedures
	- theoretical distribution – continuous – discrete – their suitability in
Companyian	modeling.
Generation	Generation of random variants – factors for selection – methods –
of random vorients:	approximation of random variables approximately uniform weibull
variants.	- generation of fandom variables - exponential - uniform - webuit -
	languages = comparison of simulation languages with general purpose
	languages – Simulation languages vs Simulators – software features –
	statistical capabilities – G P S S – SIMAN- SIMSCRIPT –Simulation of
	M/M/1 queue – comparison of simulation languages.
Output data	Output data analysis – Types of Simulation w.r.t output dat analysis –
analysis	warmup period- Welch algorithm – Approaches for Steady – State
	Analysis – replication – Batch means methods – comparisons
Applications	Applications of Simulation - flow shop system - job shop system -
of Simulation	M/M/1 queues with infinite and finite capacities – Simple fixed period
	inventory system – Newboy paper problem.
Textbooks	1. Simulation Modelling and Analysis / Law, A.M. & Kelton / McGraw Hill, 2nd
	Edition, New York, 1991.
	2. Simulation of Manufacturing Systems / Carrie A. / Wiley, NY, 1990.
References	1 Building Blockchain Projects-Narayan Prusty, Packt Publishing.

Intrusion Detection - SET/CSE/MT/E 316

Module Name	Content
Module 1	The state of threats against computers, and networked systems-Overview of computer
	security solutions and why they fail-Vulnerability assessment, firewalls, VPN's -
	Overview of Intrusion Detection and Intrusion Prevention Network and Host-based
	IDS
Module 2	Classes of attacks - Network layer: scans, denial of service, penetration-Application
	layer: software exploits, code injection-Human layer: identity theft, root access-
	Classes of attackers-Kids/hackers/sop Hesitated groups-Automated: Drones, Worms,
	Viruses
Module 3	A General IDS model and taxonomy, Signature-based Solutions, Snort, Snort rules,
	Evaluation of IDS, Cost sensitive IDS.
	Anomaly Detection Systems and Algorithms-Network Behavior Based Anomaly
	Detectors (rate based)-Host-based Anomaly Detectors-Software Vulnerabilities State
	transition, Immunology, Payload Anomaly Detection
Module 4	Attack trees and Correlation of alerts-Autopsy of Worms and Botnets-Malware
	detection-Obfuscation, polymorphism-Document vectors
Madula 5	Empil/IM according to the second day
Module 5	detection Insider Threat issues Toyonomy Messuereds and Impersonation Traitors
	Deceverent de la listure Colleborative Security
	Decoys and Deception-Future. Conaborative Security
Textbooks	1. Crimeware, Understanding New Attacks and Defenses, Markus Jakobsson and
	Zulfikar Ramzan, Symantec Press.
	2. The Art of Computer Virus Research and Defense, Peter Szor, Symantec
	Press.

Soft Computing- SET/CSE/MT/E 317	
	3 1 0
Module Name	Content
Module 1	Evolution of Computing: Soft Computing Constituents, From Conventional AI to
	Computational Intelligence: Machine Learning Basics
Module 2	Fuzzy Sets, Operations on Fuzzy Sets, Fuzzy Relations, Membership Functions:
	Fuzzy Rules and Fuzzy Reasoning, Fuzzy Inference Systems, Fuzzy Expert Systems,
	Fuzzy Decision Making.
Module 3	NEURAL NETWORKS: Machine Learning Using Neural Network, Adaptive
	Networks, Feed forward Networks, Supervised Learning Neural Networks, Radial
	Dasis Function Networks : Reinforcement Learning, Onsupervised Learning Neural Networks Adaptive Resonance architectures. Advances in Neural networks
Module 4	GENETIC AI GORITHMS: Introduction to Genetic Algorithms (GA) Applications
Module 4	of GA in Machine Learning : Machine Learning Approach to Knowledge Acquisition.
	Recent Trends in deep learning, various classifiers, neural networks and genetic
	algorithm
Textbooks	1. Jyh:Shing Roger Jang, Chuen:Tsai Sun, EijiMizutani, Neuro:Fuzzyand Soft
	Computing, Prentice: Hall of India, 2003.
	2. George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications
	Prentice Hall, 1995.

Blockchain Technology- SET/CSE/MT/E 318

Module Name	Content
Introduction	Definitions of blockchains. The history of blockchain. Generic elements
to Blockchain	of a blockchain Features of a blockchain Applications of blockchain
to Diventinum	technology Types of blockchain Benefits and limitations of blockchain
Decentralizati	Decentralization using blockchain. Methods of decentralization Routes to
Detenti anzati	decentralization Blockshein and full accepted decentralization. Smart
011.	decentralization, Diockenain and fun ecosystem decentralization, Smart
	contract, Decentralized organizations, Platforms for decentralization
Cryptography	Cryptographic primitives, Asymmetric cryptography, Public and private
and Technical	keys, Hash functions, Secure Hash Algorithms (SHAs), Merkle trees,
Foundations:	Patricia trees ,Distributed hash tables (DHTs) ,Digital signatures
Bitcoin:	Bitcoin definition, Bitcoin Transactions, Bitcoin Blockchain, Bitcoin
	payments, Bitcoin limitations, Other crypto currency: Namecoin,
	Litecoin, Zcash
Ethereum:	Ethereum clients and releases, The Ethereum stack, Ethereum blockchain
	,Currency (ETH and ETC) ,Forks, Gas ,The consensus mechanism,
	Elements of the Ethereum blockchain, Precompiled contracts, Mining,
	Applications developed on Ethereum
Hyperledger:	Hyperledger as a protocol, Hyperledger Fabric, Sawtooth lake, Corda
7 F8	Architecture State objects 376 Transactions Consensus Flows
	Components
Taythooka	1 Mastaring Blockshain Imran Bashir Dackt Publishing
I CALDUUKS	1. Mastering Dioekenani – miran Dasini, 1 ackt 1 ubitsining.
Defenses	1 Decitive Discloshein Decisets Neurosen Decete Decist D. 11:11:1
Kelerences	I Building Blockchain Projects-Narayan Prusty, Packt Publishing.

Internet of Things-SET/CSE/MT/E319

	510
Module Name	Content
M2M to IoT-	The Vision-Introduction, From M2M to IoT, M2M towards IoT-the global context, A use case
	example, Differing Characteristics.
M2M to IoT – A	Introduction, Some Definitions, M2M Value Chains, IoT Value Chains, An emerging industrial
Market	structure for IoT, The international driven global value chain and global information monopolies. M2M
Perspective	to IoT-An Architectural Overview- Building an architecture, Main design principles and needed
	capabilities, An IoT architecture outline, standards considerations.
M2M and IoT	Devices and gateways, Local and wide area networking, Data management, Business processes in IoT,
Technology	Everything as a Service(XaaS), M2M and IoT Analytics, Knowledge Management
Fundamentals-	
IoT Architecture-	Introduction, State of the art, Architecture Reference Model- Introduction, Reference Model and
State of the Art –	architecture, IoT reference Model
IoT Reference	Introduction, Functional View, Information View, Deployment and Operational View, Other Relevant
Architecture-	architectural views. Real-World Design Constraints- Introduction, Technical Design constraints-
	hardware is popular again, Data representation and visualization, Interaction and remote
	control. Industrial Automation- Service-oriented architecture-based device integration, SOCRADES:
	realizing the enterprise integrated Web of Things, IMC-AESOP: from the Web of Things to the Cloud
	of Things, Commercial Building Automation- Introduction, Case study: phase one-commercial
	building automation today, Case study: phase two- commercial building automation in the future.
	r
Textbooks	1. Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos, David
	Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of
	Intelligence", 1 st Edition, Academic Press, 2014.
References	1 Vijav Madisatti and Archdeen Bahga "Internet of Things (A Hands on Approach)" 1 st Edition
Mererences	VPT, 2014.
	2. Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting
	Everything", 1 st Edition, Apress Publications, 2013

Quantum Computation- SET/CSE/MT/E 320L T P	
	3 1 0
Module Name	Content
Introduction	Quantum bits, Bloch sphere representation of a qubit, multiple qubits.
to Quantum	Hilber space, Probabilities and measurements, entanglement, density
Computation	operators and correlation, basics of quantum mechanics, Measurements in
	bases other than computational basis.
Quantum	single qubit gates, multiple qubit gates, design of quantum circuits.
Circuits:	
Quantum	Comparison between classical and quantum information theory. Bell
Information	states. Quantum teleportation. Quantum Cryptography, no cloning
and	theorem.
Cryptography	
•	
Quantum	Classical computation on quantum computers. Relationship between
Algorithms:	quantum and classical complexity classes. Deutsch's algorithm,
	Deutsch's-Jozsa algorithm, Shor factorization, Grover search.
Noise and	Graph states and codes, Quantum error correction, fault-tolerant
error	computation.
correction:	
Textbooks	1.Nielsen M. A., Quantum Computation and Quantum Information,
	Cambridge University Press.
	2. Benenti G., Casati G. and Strini G., Principles of Quantum
	Computation and Information, Vol. I: Basic Concepts, Vol II: Basic Tools
	and Special Topics, World Scientific.
References	1 Pittenger A. O., An Introduction to Quantum Computing Algorithms