Curriculum and Syllabi

B. TECH. <u>Information Technology</u>

(Applicable for 2015-16 batch and onwards)

Department of Information Technology

School of Engineering and Technology, H. N. B. Garhwal University(Chauras Campus) Uttarakhand- 249161

<u>Curriculum</u>

Definitions/ Descriptions:

1. Credit Equivalent

	No. of Contact Hours per Week	Equivalent Credits
Lecture+ Tutorial	4	3
Practical	2	1

2. Code for Courses:

Code for a course consists of two alphabets followed by three digits and an optional alphabet.

First three alphabet represent the school name (SET: School of Engineering and Technology) next two alphabets in the code represent the subject area of the course. E.g. (SH: Applied Science and Humanities, EC: Electronics and Communication Engineering, IN: Instrumentation Engineering, EE: Electrical Engineering, ME: Mechanical Engineering, CS: Computer Science and Engineering, IT: Information Technology, AECC: Ability Enhancement Compulsory Courses). Then there will be subject code with 4 letters out of which first will tell the nature of subject (C: Core/E: Elective/S: Skill Enhancement) and next three letters will tell the number according to the semester(for example 801 will tell its 8th semester subject). First digit represents the semester. Next two digits represent the sequence number of course in the list of courses of a semester.

Elective Course:

Elective courses are provided in VII and VIII semesters to provide student with flexibility to choose courses of their interest from a list of offered electives. These Electives are the courses offered by the same department or other departments for the students.

Semester-wise List of Subjects

Semester I

S. No.	Code	Course Title	L	Т	Р	Contact Hrs. /Week	Credits
1	SET/SH/BT/C101	Mathematics I	3	1	-	4	3
2	SET/ME/BT/C102	Basic Mechanical Engineering	3	1	-	4	3
3	SET/SH/BT/C103	Chemistry	3	1	-	4	3
4	SET/ME/BT/C104	Engineering Mechanics	3	1	-	4	3
5	SET/CS/BT/C105	Computer Programming	3	1	-	4	3
6	AECC106	Environmental Science*	2	-	-	2	2
7	SET/ME/BT/C107	Basic Mechanical Engineering Lab	-	-	1	2	1
8	SET/SH/BT/C108	Chemistry Lab	-	-	1	2	1
9	SET/CS/BT/C109	C Programming Lab	-	-	1	2	1
10	SET/ME/BT/C110	Engineering Workshop	-	-	2	4	2
Total			17	5	5	32	22

*AECC – Ability Enhancement Compulsory Course

Semester II

S. No.	Code	Course Title	L	Т	Р	Contact Hrs./W eek	Credits
1	SET/SH/BT/C201	Mathematics II	3	1	-	4	3
2	SET/SH/BT/C202	Physics	3	1	-	4	3
3	SET/EE/BT/C203	Basic Electrical Engineering	3	1	-	4	3
4	SET/EC/BT/C204	Basic Electronics	3	1	-	4	3
5	SET/IT/BT/C205	Fundamentals of Information Technology	3	1	-	4	3
6	AECC206	General English*	2	-	-	2	2
7	SET/SH/BT/C207	Physics Lab	-	-	1	2	1
8	SET/EE/BT/C208	Electrical Engineering Lab	-	-	1	2	1
9	SET/IT/BT/C209	Information Technology Lab	-	-	1	2	1
10	SET/ME/BT/C210	Engineering Graphics	-	-	2	4	2
Total			17	5	5	32	22

*AECC – Ability Enhancement Compulsory Course

Semester III

S. No.	Code	Course Title	L	Т	Р	Contact Hrs./W eek	Credits
1	SET/AH/BT/C301	Mathematics III	3	1	-	4	3
2	SET/IT/BT/C302	Computer Based Numerical & Statistical Techniques	3	1	-	4	3
3	SET/IT/BT/C303	Principle of Programming Language	3	1	-	4	3
4	SET/IT/BT/C304	Data Structures Using C	3	1	-	4	3
5	SET/EC/BT/C305	Digital Electronics	3	1	-	4	3
6	SET/IT/BT/C306	Computer Based Numerical & Statistical Techniques Lab	-	-	1	2	1
7	SET/IT/BT/C307	Data Structures Using C Lab	-	-	2	4	2
8	SET/EC/BT/C308	Digital Electronics Lab	-	-	1	2	1
9	SET/IT/BT/S309	Seminar	-	-	1	2	1
Total			15	5	5	30	20

Semester IV

S. No.	Code	Course Title	L	Т	Р	Contact Hrs./We ek	Credits
1	SET/IT/BT/C401	Computer Organization	3	1	-	4	3
2	SET/IT/BT/C402	Operating System	3	1	-	4	3
3	SET/IT/BT/C403	Object Oriented Programming using C++	3	1	-	4	3
4	SET/IT/BT/C404	Discrete Structure	3	1	-	4	3
5	SET/IT/BT/C405	Management Information System	3	1	-	4	3
6	SET/IT/BT/C406	Computer Organization Lab	-	-	1	2	1
7	SET/IT/BT/C407	Operating System Lab	-	-	1	2	1
8	SET/IT/BT/C408	Object Oriented Programming using C++ Lab	-	-	1	2	1
9	SET/IT/BT/S409	Mini Project -1	-	-	2	4	2
Total			15	5	5	30	20

Semester V

S.	Code	Course Title	L	Т	Р	Contact	Credits
No.						Hrs./W	
						eek	
1	SET/IT/BT/C501	Database Management System	3	1	-	4	3
2	SET/IT/BT/C502	Computer Networks	3	1	-	4	3
3	SET/IT/BT/C503	Design and Analysis of Algorithms	3	1	-	4	3
4	SET/IT/BT/C504	Theory of Automata and Formal Language	3	1	-	4	3
5	SET/IT/BT/C505	Software Engineering	3	1	-	4	3
6	SET/IT/BT/C506	DBMS Lab	-	-	1	2	1
7	SET/IT/BT/C507	Computer Networks Lab	-	-	1	2	1
8	SET/IT/BT/C508	Design and Analysis of Algorithms Lab	-	-	2	4	2
9	SET/IT/BT/S509	Seminar	-	-	1	2	1
Total			15	5	5	30	20

Semester VI

S.	Code	Course Title	L	Т	Р	Contact	Credits
No.						Hrs./	
						Week	
1	SET/IT/BT/C601	Compiler Construction	3	1	-	4	3
2	SET/IT/BT/C602	Computer Graphics	3	1	-	4	3
3	SET/IT/BT/C603	Cryptography and Network Security	3	1	-	4	3
4	SET/IT/BT/C604	Graph Theory	3	1	-	4	3
5	SET/IT/BT/C605	E-Commerce	3	1	-	4	3
6	SET/IT/BT/C606	Compiler Construction Lab	-	-	1	2	1
7	SET/IT/BT/C607	Computer Graphics Lab	-	-	1	2	1
8	SET/IT/BT/C608	Cryptography and Network Security Lab	-	-	1	2	1
9	SET/IT/BT/S609	Mini Project – 2	-	-	2	4	2
Total			15	5	5	30	20

S.	Code	Course Title	L	Т	Р	Contact	Credits
No.						Hrs./We	
						ek	
1	SET/IT/BT/C701	Unix and Shell Programming	3	1	-	4	3
2	SET/IT/BT/C702	Artificial Intelligence	3	1	-	4	3
3	SET/IT/BT/C703	Software Project Management	3	1	-	4	3
4		Elective I	3	1	-	4	3
5		Elective II	3	1	-	4	3
6	SET/IT/BT/C706	Unix and Shell Programming Lab	-	-	1	2	1
7	SET/IT/BT/C707	Artificial Intelligence Lab	-	-	1	2	1
8	SET/IT/BT/C708	Project Work – I	-	-	2	4	2
9	SET/IT/BT/S709	Industrial Training Seminar	-	-	1	2	1
Total			15	5	5	30	20

Semester VII

	S. No.	Code	Course Title
Floativo I	1	SET/IT/BT/E721	Advanced Information System Engineering
Elective I	2	SET/IT/BT/E722	Object Oriented Modeling and Design
	3	SET/IT/BT/E723	Advance Database Management System

	S. No.	Code	Course Title
Flootivo II	1	SET/IT/BT/E731	Distributed Systems
Liecuve II	2	SET/IT/BT/E732	Neural Networks
	3	SET/IT/BT/E733	Digital Image Processing

Semester VIII

S.	Code	Course Title	L	Т	Р	Contact	Credits
No.						Hrs./Week	
1	SET/IT/BT/C801	ERP Systems	3	1	-	4	3
2	SET/IT/BT/C802	Data Mining and Data Warehousing	3	1	-	4	3
3		Elective III	3	1	-	4	3
4		Elective IV	3	1	-	4	3
5	SET/IT/BT/C806	Project and Dissertation	-	-	6	12	6
Total			12	4	6	28	18

	S. No.	Code	Course Title
	1	SET/IT/BT/E821	Cloud Computing
Elective III	2	SET/IT/BT/E822	Mobile Computing
	3	SET/IT/BT/E823	Bioinformatics
	4	SET/IT/BT/E824	.NET Technology

	S. No.	Code	Course Title
Elective IV	1	SET/IT/BT/E831	Real Time Systems
	2	SET/IT/BT/E832	Natural Language Processing
	3	SET/IT/BT/E833	Pattern Recognition
	4	SET/IT/BT/E834	E-Business

<u>Note</u>

- (1) Topic for the Seminar shall be chosen by students in consultation with faculty. Topic shall not be mentioned in the syllabus anywhere, however, it should be related to Information Technology.
- (2) Mini Project work can be carried out individually or by a group of maximum of five students under the guidance of faculty. A committee of examiners will evaluate the projects.
- (3) Students in B. Tech. 7th and 8th semester shall choose 2 elective subjects from the respective tables. An elective subject shall be provided only for 15 or more students.
- (4) Major Project work shall be carried out during the 7th and 8th semester. Students can undertake Major Project individually or in group of not more than three students, under the supervision of guide and co-guide. Students have to present Synopsis of Major Project during the 7th semester. Project topic /title shall be evaluated by the project evaluation committee of faculty in the department before the end of 7th semester. However, Major Project would be evaluated in the end of 8th semester.

<u>Detailed Syllabi</u>

<u>SEMESTER – I</u>

	Theory	L	Т	Р	T.A.	C.T.	TOT	ESE.	SUB.	Credit
Code	Course								TOTAL	
SET/SH/BT/C101	Mathematics I	3	1	-	10	20	30	70	100	3
SET/ME/BT/C102	Basic Mechanical Engineering	3	1	-	10	20	30	70	100	3
SET/SH/BT/C103	Chemistry	3	1	-	10	20	30	70	100	3
SET/ME/BT/C104	Engineering Mechanics	3	1	-	10	20	30	70	100	3
SET/CS/BT/C105	Computer Programming	3	1	-	10	20	30	70	100	3
AECC106	Environmental Science	2	-	-	10	20	30	70	100	2
SET/ME/BT/C107	Basic Mechanical Engineering Lab	-	-	1	30	-	30	70	100	1
SET/SH/BT/C108	Chemistry Lab	-	-	1	30	-	30	70	100	1
SET/CS/BT/C109	C Programming Lab	-	-	1	30	_	30	70	100	1
SET/ME/BT/C110	Engineering Workshop	-	-	2	30	-	30	70	100	2
Total		17	5	5			300	700	1000	22

L-Lecture, T-Tutorial, P-Practical, T.A-Teacher's Assessment, C.T - Class Test, TOT-Total, ESE - End Semester Examination.

	MATHEMATICS- I (SET/SH/BT/C101)			
Module Name	Content	No. of Hrs.		
Vector Calculus	Interpretation of Vectors & Scalars, Gradient, Divergence and Curl of a Vector and Their Physical	8		
	Interpretation, Gauss Divergence Theorem and Stoke's Theorem.			
Matrices	Elementary Row and Column Transformation, Linear Dependence, Rank of Matrix, Consistency of System	13		
	of Linear Equation and Solution of Linear System of Equations. Characteristic Equation, Cayley-Hamilton			
	Theorem, Eigen Values and Eigen Vectors, Diagonalization, Complex Matrices.			
Differential	Libnitz theorem, Partial Differentiation, Euler's Theorem, Asymptotes, Curve Tracing, Envelops and	13		
Calculus	Evolutes. Change of Variables, Jacobians, Expansion of Functions of One and Several Variables.			
	Cylindrical and Spherical Coordinate System. Approximation of Errors. Extrema of Function of Several			
	Variables, Langrange's Method.			
Probability and	Binomial Distribution, Normal Distribution and Poisson's Distribution. Correlation and Regression.	8		
Statistics				
	Total No. of Hours	42		
Textbooks	1. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers			
	2. H K Das, "Advanced Engineering Mathematics", S Chand			
	3. Erwin Kreyszig, "Advanced Engineering Mathematics"			
References	1. Shanti Narayan, "A Text Book of Matrices", S. Chand			
	2. Finney Thomas, "Calculus and Analytical Geometry", Narosa Publication House			
	3. N. Piskunov, "Differential and Integral Calculus"			

	BASIC MECHANICAL ENGINEERING (SET/ME/BT/C102)	
Module Name	Content	No. of Hrs.
Laws of Thermodynamics	Concept of temperature, equality of temperature, Zeroth law, principles of thermometry and temperature scale. First law of thermodynamics, concept of internal energy, application of first law to a closed system to various processes, flow processes and control volume, flow work, steady flow energy equation, mechanical work in steady flow process, throttling process, application of first law to open system. Essence of second law, thermal reservoir, heat engines and thermal efficiency. COP of heat pump and refrigerator, definition of available and unavailable energy. Statement of second law, Carnot cycle, Carnot's theorem, Clausius inequality, concept of entropy, entropy changes for ideal gases.	8
Properties of Steam	Generation of steam at constant pressure, various states of water, steam, properties of steam, use of property diagram, processes of vapour in closed and open system, determination of dryness fraction of steam by separating and throttling calorimeter, Rankine cycle.	5
Thermodynamic Cycle	Definitions of bore, stroke, clearance ratio, compression ratio, definition and calculation of mean effective pressure from the cyclic work (proof not required), indicated pressure, air standard cycle (Otto and diesel cycle), principle of working and description of two and four stroke S.I. and C.I. engine.	8
Strength of Material- Simple Stresses and Strains	Stress- tensile and compressive, strain, strain energy, stress-strain diagram, ductile and brittle material, elastic constants, impact loading, varying cross-section and load, temperature stresses, shear stress, complementary shear stress, shear strain.	8
Compound Stresses and Strains	State of stress at a point, oblique stress, simple tension, pure shear, general two dimensional stress system, principal planes, principal stresses and strains, Mohr's stress circle, Poisson's ratio, maximum shear stress.	8
Bending Stress and Torsion	Pure bending, moment of inertia, section modulus, bending stresses, combined bending and direct stress, beam of uniform strength, middle third and middle quarter rules for rectangular and circular sections, Circular shafts, torsional shear stress, strain energy in torsion, shafts under varying torque, compound shafts, combined bending and twisting.	8
	Total No. of Hours	55
Textbooks	 R S Khurmi, "Engineering Mechanics" P K Nag "Engineering Thermodynamics" 	
References	 Van Wylen G.J., Sonnlog R.E., "Fundamentals of Classical Thermodynamics", John Wiley & Wark Wenneth, "Thermodynamics", (2nd edition), Mc Graw Hill book Co. NY. Holman, J.P., "Thermodynamics", MC Graw Hill book Co. NY. Yadav R., "Thermodynamics and Heat Engines", Vol I & II (SI Edition) Central Publishing H Yadav R., "Steam & Gas Turbines". Kshitish Chandra Pal, "Heat Power", Orient Longman Limited, 17, Chittranjan Avenue, Calcu S. Rao, B.B. Parulekar, "Energy Technology", Khanna Pub., New Delhi. G. H. Ryder : "Strength of Materials". F. L. Singer : "Strength of Materials". Timoshenko : "Strength of Materials". 	Sons,Inc. NY. ouse Allahabad. 1tta.

	CHEMISTRY (SET/SH/BT/C103)	
Module Name	Content	No. of Hrs.
Thermodynamics	Terminology in Thermodynamics, Zeroth law of Thermodynamics, First law of Thermodynamics, Enthalpy, Reversible isothermal expansion of ideal gas, Adiabatic expansion of ideal gas, Joule-Thomson effect.	4
Lubricants	Theory, classification and mechanism of lubrication.	4
Polymers	Structures of the following polymers, viz, Natural and synthetic rubbers, Polyamide and Polyester fibres, polymethylmethacrylate, poly acrylonitrile and polystyrene. A brief account of conducting polymers (polypyrrole & polythiophene) & their applications.	3
Complex Compounds	Introduction, Valence bond and crystal field theory for bonding in complexes.	4
Chemical Kinetics & Catalysis	Order and molecularity of reactions, Catalysis- homogeneous and heterogeneous catalysis. Characteristics of catalytic reactions, catalytic promoters and poisons, auto catalysis and negative catalysis. Activation energy of catalysis, intermediate compound formation theory and adsorption theory.	3
Atmospheric Chemistry& Air Pollution	Environment and ecology, environmental segments, structure and composition of atmosphere, radiation balance of earth and Green House Effect, formation and depletion of Ozone layer, chemical and photochemical reactions of various species in atmosphere, air pollution- sources, reactions and sinks for pollutants, acid rains and smog formation. Pollution control methods.	5
Corrosion	Introduction, causes of corrosion, theories of corrosion- direct chemical attack, electrochemical theory of corrosion, factors influencing corrosion, passivity, types of corrosions, protection from corrosion (Cathodic and anodic protection) and protective metallic coatings (Galvanizing and tinning).	5
Water and Waste Water Chemistry	Introduction, Hardness of Water, Characteristics Imparted by Impurities, Determination of hardness by EDTA method, Treatment of Water by Zeolite, L-S Process, Boiler problems caused by use of hard Water, Reverse osmosis process for purification of water. Numerical based on hardness of water, zeolite process and Lime-soda process.	6
Fuels & Combustion	Classification of Fuels, Non-Conventional Energy, Biogas, and Solar Energy, Calorific value – Gross and Net, Characteristics of Good Fuel, Determination of Calorific Value by bomb calorimeter method (theory and numerical), Solid Fuels: Analysis of Coal (Proximate and ultimate analysis of coal theory and numerical), Liquid Fuels: mining and refining of petroleum, cracking (Thermal and catalytic), Knocking, octane and cetane number.	5
Stereochemistry of Organic-Compounds	Mechanism of Chemical Reaction, Beckman, Hoffman, Reimer Tiemann, Cunnizzaro, Diels- Alder and Skraup synthesis.	3
	Total No. of Hours	42
Textbooks	 Jain, Jain, "Engineering Chemistry" Sharma, Kumar, "Engineering Chemistry" 	
Keierences	 K. I. Morrison and K.N.Boyd, Organic Chemistry', our Edition, Prentice Hall, New Delhi, J. D. Lee, "Concise Inorganic Chemistry", Chapman & Hall W. L. Jolly, "Modern Inorganic Chemistry", McGraw-Hill P.W. Atkins, "Physical Chemistry", 6th Edition, Oxford University Press Barrow, "Physical Chemistry" Manahan, "Environmental Chemistry" Manahan, "Environmental Chemistry" D. L. Pavia, GM. Lampman, GS. Kriz and J.R Vyvyan, I, "Spectroscopy", Cengage Learn Ltd, New Delhi, 2007 R.M. Silverstein, F.X. Webster and D.J. Kiemle, "Spectrometric Identification of Organic 7th edition, John-Wiley and Sons, New York, 2005 William Kemp, "Organic Spectroscopy", 3rd edition, Palgrave, New York, 2005 C.N. Banwell and E. M. McCash, "Fundamentals of Molecular Spectroscopy", N International, UK, 1995 F. Carey, "Organic Chemistry", 5th Edition, McGraw Hill Publishers, Boston, 2003 	ing India Pvt. Compounds", ∕IcGraw- Hill,

	BASIC ENGINEERING MECHANICS(SET/ME/BT/C104)	
Module Name	Content	No. of Hrs
Force System	Introduction: Force system, dimensions and units in mechanics, laws of mechanics, vector algebra, addition and subtraction of forces, cross and dot products of vectors, moment of a force about a point and axis, couple and couple moment, transfer of a force to a parallel position, resultant of a force system using vector method, Problems involving vector application Equilibrium: Static and dynamic equilibrium, static in determinacy, general equations of equilibrium, Varingnon's theorem, Lami's theorem, equilibrium of bodies under a force system, Problems.	10
Trusess And Frames	Truss and Frames: Truss, classification of truss, assumptions in truss analysis, perfect truss, analysis of perfect plane truss using method of joints and method of sections, Problems.	10
Centre Of Gravity And Moment Of Interia	Centroid, Centre of mass and Centre of gravity, Determination of centroid, centre of mass and centre of gravity by integration method of regular and composite figures and solid objects, Problems Moment of Inertia: Area moment of inertia, mass moment of inertia, parallel axis and perpendicular axis theorems, radius of gyration, polar moment of inertia, product of inertia, principle axis, problem based on composite figures and solid objects.	13
Kinematics And Dynamics	Kinematics: Concept of rigid body, velocity and acceleration, relative velocity, translation and rotation of rigid bodies, equations of motion for translation and rotation, problems. Particle Dynamics: Energy methods and momentum methods, Newton's laws, work energy equation for a system of particles, linear and angular momentum equations, projectile motion, problem	12
Total No. of Hours		45
Textbooks	 R S Khurmi, "Engineering Mechanics" P K Nag "Engineering Thermodynamics" 	
References	 Van Wylen G.J. & Sonnlog R.E. : Fundamentals of classical thermodynamics, John Wiley & S. Wark Wenneth : Thermodynamics (2nd edition), Mc Graw Hill book Co. NY. Holman, J.P. : Thermodynamics, MC Graw Hill book Co. NY. Yadav R. : Thermodynamics and Heat Engines, Vol I & II (SI Edition) Central Publishing Hou Yadav R. : Steam & Gas Turbines. Kshitish Chandra Pal : Heat Power, Orient Longman Limited, 17, Chittranjan Avenue, Calcutta S. Rao, B.B. Parulekar, 'Energy Technology', Khanna Pub., New Delhi. G. H. Ryder : "Strength of Materials". F. L. Singer : "Strength of Materials". Timoshenko : "Strength of Materials". 	ons,Inc. NY. se Allahabad. 1.

COMPUTER PROGRAMMING (SET/CS/BT/C105)			
Module Name	Content	No. of Hrs.	
Introduction	C Character Set, Identifiers and Keywords, Data Types, Declarations, Expressions, Statements and Symbolic Constants.	6	
Operators and Expressions	Arithmetic, Unary, Relational, Logical, and Assignment Operators, Conditional Operator, Library Functions.	6	
Control Statements	While, Do-while, For Statements, Nested Loops, If-Else, Switch, Break, Continue and Go to Statements, Comma Operator.	5	
Functions	Defining and Accessing Functions, Function Prototypes, Passing Arguments, Recursion, and Use of Library Functions.	5	
Program Structure	Storage classes, Automatic, External, Static Variables	4	
Arrays	Defining and Processing, Passing to a Function, Multidimensional Arrays, Arrays and Strings.	4	
Pointers	Declarations, Passing to a Function, Operations on Pointers, Pointers and Arrays, Dynamic Memory Allocation, Array of Pointers.	6	
Structures and	Basics of Structures, Structures and Functions, Arrays of Structures, Pointers to Structures, Self Referential	4	
Unions	Structures, type definitions, Unions.		
Data Files	Open, Close, Create, Process, Unformatted data files.	4	
	Total No. of Hours	44	
Textbooks	1. E. Balagurusamy, "Programming in ANSI C"		
References	 Byron S. Gottfried, "Programming With C" Yashwant Kanitker, "LET US C" B. W. Kernighan and D. M. Ritchie, "The C Programming Language" B. W. Kernighan, "The Practice of Programming", Addison-Wesley, 1999. C. L. Tondo and S. E. Gimpel, "The C Answer Book", (2/e), Prentice Hall, 1988. 		

ENVIRONMENTAL SCIENCE(AECC106)			
Module Name	Content	No. of Hrs.	
Introduction to	Multidisciplinary nature of Environmental Sciences: Scope and importance: Concept of sustainability and	2	
Environmental	sustainable development.		
Sciences	•		
	What is an ecosystem? Structure and function of ecosystem; Energy flow in an ecosystem: food chains, food	6	
Ecosystems	webs and ecological succession. Case studies of the following ecosystems :		
	a. Forest ecosystem b. Grassland ecosystem c. Desert ecosystem d. Aquatic ecosystems (ponds, streams, lakes,		
	rivers, oceans, estuaries)		
Natural	Land resources and land use change; Land degradation, soil erosion and desertification.	8	
Resources:	Deforestation: Causes and impacts due to mining, dam building on environment, forests, biodiversity and tribal		
Non-renewable	populations. water. Use and over-exploration of surface and ground water, noods, droughts, connects over		
Resources	alternate energy sources, growing energy needs, case studies.		
Biodiversity	Levels of biological diversity : genetic, species and ecosystem diversity: Biogeographic zones of India:	8	
and	Biodiversity patterns and global biodiversity hot spots. India as a mega-biodiversity nation: Endangered and	Ũ	
Conservation	endemic species of India, Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts,		
	biological invasions; Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity. Ecosystem		
	and biodiversity services: Ecological, economic, social, ethical, aesthetic and Informational value.		
Environmental	Environmental pollution : types, causes, effects and controls; Air, water, soil and noise pollution	8	
Pollution	Nuclear hazards and human health risks, Solid waste management: Control measures of urban and industrial		
	waste. Pollution case studies.		
Environmental	Climate change, global warming, ozone layer depletion, acid rain and impacts on human communities and	7	
Policies &	agriculture, Environment Laws: Environment Protection Act 1986; Air (Prevention & Control of Pollution) Act		
Practices	1981; water (Prevention and control of Pollution) Act 1974; wildlife Protection Act 1972; Forest Conservation A at 1980. International agreements: Montreal protocol, Kyota protocol and Convention on Piological Diversity		
	(CBD)		
	Nature reserves tribal populations and rights, and human wildlife conflicts in Indian context		
Human	Human population growth: Impacts on environment, human health and welfare. Resettlement and rehabilitation	6	
Communities	of project affected persons; case studies. Disaster management: floods, earthquake, cyclones and landslides.	-	
and the	Environmental movements: Chipko, Silent valley, Bishnois of Rajasthan.		
Environment	Environmental ethics: Role of Indian and other religions and cultures in environmental conservation.		
	Environmental communication and public awareness, case studies (e.g., CNG vehicles in Delhi).		
Field work	Visit to an area to document environmental assets: river/ forest/ flora/fauna, etc., Visit to a local polluted site-	5	
	Urban/Rural/Industrial/Agricultural. Study of common plants, insects, birds and basic principles of		
	identification. Study of simple ecosystems-pond, river, lake, forest patch, grassland, Delhi Ridge, etc.	50	
	1 otal No. of Hours	50	
Textbooks	1. Carson, R. 2002. "Silent Spring". Houghton Mifflin Harcourt.		
	2. Gadgii, M., & Guna, K. 1993. "Inis Fissured Land: An Ecological History of India". Univ. of California F	ress.	
	5. Gleick P H 1003 " <i>Water in Crisis</i> " Pacific Institute for Studies in Dev. Environment & Security Stock	holm Env	
	Institute Oxford Univ	lionn Luv.	
		1.0.	
References	1. Groom, Martha J., Gary K. Meffe, and Carl Ronald Carroll. " <i>Principles of Conservation Biology</i> . Sunderla	and: Sinauer	
	Associates, 2000. 2 Grumbing P. Edward and Pondit M.K. 2013 "Threats from India's Himalova dams" Science, 330: 36 2'	7	
	2. Ordinome, R. Edward, and Fandri, M.K. 2015. Finedis from mida's finitalaya dams . Science, 55). 50-5 3. McCully P. 1996 "Rivers no more: the environmental effects of dams" (nr. 29-64). Zed Books	/.	
	 McCully, F. 1990. Rivers no more: the environmental ejects of dums (pp. 29 of). Eed books. McNeill, John R. 2000. "Something New Under the Sun: An Environmental History of the Twentieth Cent 	hirv".	
	5. Odum, E.P., Odum, H.T. & Andrews, J. 1971. "Fundamentals of Ecology". Philadelphia: Saunders.	ini j	
	6. Pepper, I.L., Gerba, C.P. & Brusseau, M.L. 2011. "Environmental and Pollution Science". Academic Press	s.	
	7. Rao, M.N. & Datta, A.K. 1987. "Waste Water Treatment". Oxford and IBH Publishing Co. Pvt. Ltd.		
	8. Raven, P.H., Hassenzahl, D.M. & Berg, L.R. 2012. "Environment." 8th edition. John Wiley & Sons.		
	9. Rosencranz, A., Divan, S., & Noble, M. L. 2001. "Environmental law and policy in India". Tripathi 1992.		
	10. Sengupta, R. 2003. "Ecology and economics: An approach to sustainable development". OUP.		
	11. Singh, J.S., Singh, S.P. and Gupta, S.R. 2014. "Ecology, Environmental Science and Conservation.", S. Ch	and, Delhi.	
	12. Sodhi, N.S., Gibson, L. & Raven, P.H. 2013. "Conservation Biology: Voices from the Tropics". John Wile	y & Sons.	
	15. Inapar, V. 1998. "Land of the Tiger: A Natural History of the Indian Subcontinent."		
	14. warren, U. E. 19/1. Biology and Water Pollution Control . WB Saunders.		
	15. witson, E. O. 2000. The Creation. An appeal to save tije on earth . New York: Notion. 16. World Commission on Environment and Development 1987 "Our Common Future" Oxford University 1	oress	
	10. World Common Future . Oxford University	21033	

Basic Mechanical Engineering Lab (SET/ME/BT/C107)		
Module Name	Content	No. of
		Hrs.
Module 1	1. Study of boiler models – Babcock Wilcox, Lancashire and Locomotive.	15x2
	2. Study of Steam Engine and Steam Turbine models.	
	3. Study of 2-Stroke and 4-Stroke ICE models.	
	4. Study of vapour compression Refrigeration unit tutor.	
	5. Study of window type air conditioner.	
	6. To conduct the tensile test on a UTM and determine ultimate tensile strength, percentage elongation	
	for a steel specimen.	
	7. To conduct the compression test and determine the ultimate compressive strength for a specimen.	
	8. To conduct impact test (Izod/Charpy) on the impact testing machine and find the impact strength. To	
	determine the hardness of the given specimen using Brinell/Rockwell/Vicker testing machine.	
	Total No. of Hours	30

CHEMISTRY LAB (SET/SH/BT/C107)			
Module Name	Content	No. of Hrs.	
Module 1	 To determine Saponification value of given oil sample. To determine the ferrous content in the supplied sample of iron ore by titrimetric analysis against standard K₂Cr₂O₇ solution using K₃Fe(CN)₆ as external indicator. To determine the chloride content in supplied water sample using Mohr's method. To determine acid value of given oil sample. To determine the total hardness of water sample by EDTA titration. To find chemical oxygen demand of a waste water sample using Potassium Dichromate. Estimation of iron in plain carbon steel by redox titration. Estimation of copper in brass by titration method. 	15 x 2	
	10. Analysis of a coal sample by proximate analysis method. Total No. of Hours	30	

C PROGRAMMING LAB (SET/CS/BT/C109)			
Module Name	Content	No. of Hrs.	
Module 1	This lab shall have minimum 25 programs in C. There shall be minimum two programs per module as taught in theory. Programming shall follow logic/algorithm and flowchart wherever applicable. Exercises shall also enhance analytical and debugging abilities.	15x2	
	Total No. of Hours	30	

ENGINEERING WORKSHOP (SET/ME/BT/C110)			
Module Name	Content	No. of Hrs.	
Module 1	Mechanical Engineering covering, the following trades for experiments (with a minimum of two exercises under each trade) - Carpentry, Fitting, Tin-Smithy and Development of jobs carried out and soldering, Black Smithy, House Wiring, Foundry (Moulding only), Plumbing; (6 Sessions)	16x2	
Module 2	Power tools in Construction, Wood working, Electrical and Mechanical Engineering practices; (2 Sessions)	8x2	
	Total No. of Hours	48	

Theory		L	Т	Р	T.A	C.T.	TOT	ESE	SUB.	Credit
Code	Course								TOTAL	
SET/SH/BT/C201	Mathematics II	3	1	-	10	20	30	70	100	3
SET/SH/BT/C202	Physics	3	1	-	10	20	30	70	100	3
SET/EE/BT/C203	Basic Electrical Engineering	3	1	-	10	20	30	70	100	3
SET/EC/BT/C204	Basic Electronics	3	1	-	10	20	30	70	100	3
SET/IT/BT/C205	Fundamentals of Information Technology	3	1	-	10	20	30	70	100	3
AECC206	*General English	2	-	-	10	20	30	70	100	2
SET/SH/BT/C207	Physics Lab	-	-	1	30	-	30	70	100	1
SET/EE/BT/C208	Electrical Engineering Lab	-	-	1	30	-	30	70	100	1
SET/IT/BT/C209	Information Technology Lab	-	-	1	30	-	30	70	100	1
SET/ME/BT/C210	Engineering Graphics			2	30	-	30	70	100	2
Total		17	5	5			300	700	1000	22

<u>SEMESTER – II</u>

MATHEMATICS- II (SET/SH/BT/C201)							
Module Name	Content	No. of Hrs.					
Multiple Integral	Double and triple integrals, change of order of integration. Change of variables, application to						
	area, volume, centre of gravity, moment of inertia and product of inertia. Gamma and Beta						
	functions, Drichlet's integral and its application.						
Fourier Series	Periodic functions, Fourier series of functions with period 2n, change of interval, half range sine	6					
	and cosine series.						
Integral Transform	Laplace transforms, existence theorem, Laplace transform derivatives, inverse Laplace transform, application to solve linear differential equations, unit step function, Dirac delta	12					
	function, Laplace transforms of periodic functions. Application of Laplace transforms.						
	Definitions of Fourier and Z-transform and its simple applications.						
Ordinary Differential	Introduction to order, degree and arbitrary constants, linear differential equations of n" order	12					
Equations	with constant coefficient, complimentary functions and particular integrals. Homogeneous						
	differential equations, simultaneous linear differential equations. Solutions of second order						
	differential equations by changing dependent and independent variables. Method of variation of						
	parameters, equations of the form $y'' = f(y)$, applications to engineering problems.						
Solutions of Equations	Solutions of cubic and bi-quadric equations. Method of least square and curve fitting.	6					
and Curve Fitting							
	Total No. of Hours	44					
Textbooks	1. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers						
	2. H K Das, "Advanced Engineering Mathematics", S Chand						
	3. Erwin Kreyszig, "Advanced Engineering Mathematics"						
References	1. J. N. Kapoor, "A Text Book of Differential Equations"						

PHYSICS (SET/SH/BT/C202)							
Module Name	Content	No. of Hrs.					
Optics	Interference: Coherent Sources, Conditions of Interference, Fresnel's Biprism Experiment, Interference in Thin Films, Newton's Rings; Single and n-Slit Diffraction, Diffraction Grating, Raleigh's Criterion of Resolution, Resolving Power of Telescope, microscope; Phenomenon of Double Refraction, Ordinary and Extra-ordinary Rays, Nicol Prism, Circularly and Elliptically Polarized Light, Fresnel Theory, Optical Activity, Specific Rotation;	13					
Lasers and X-Rays	Laser : Principle of Laser Action, Einstein's Coefficients, Construction and Working of He-Ne 7 and Ruby Laser; Introduction to Maser, Diffraction of X-Rays, Bragg's Law, Practical 7 Applications of X-Rays, Compton Effect. 7						
Basics Material Science	Introduction to crystal structure of materials, Miller indices for crystallographic planes and directions. X-ray diffraction for determination of crystal structure. Defects in solids: point, line and planar defects and their effect on properties of materials. Band theory of solids, conductors, semi-conductors and insulators, metals. Fermi Level. Magnetism: dipole moments, paramagnetism, Curie's law, magnetization and hysterisis, Ferromagnetism and Anti-Ferromagnetism. Ferro electricity and Piezoelectricity. Superconductivity in materials.	14					
Electromagnetics	Ampere's Law and Displacement Current, Maxwell's Equations in Integral and Differential Forms, Electromagnetic Wave Propagation in Free Space and Conducting Media, Poynting Theorem.	8					
	Total No. of Hours	42					
Textbooks	 Gaur, Gupta, "Engineering Physics" Callister W.D., "Materials Science and Engineering: An introduction", 6th Edition, John Wiley & York 2002 	& Sons Inc., New					
References	 J. R. Taylor, C.D. Zafiratos and M. A. Dubson, "Modern Physics for Scientists and Engineers",F Arthur Beiser, "Concepts of Modern Physics", TMH, 6th Ed. A.K. Ghatak : "Optics" Subramanyam, Brijlal : "Optics" Wehr Richords & Adiav : "Physics of Atoms" O.Svelto : "Lasers" D.J. Griffith : "Electrodynamics" Robert Eisberg and Robert Resnick, "Quantum Physics of atoms, Molecules, Solids, Nuclei and Ed., John Wiley(2006) Raghavan V. " Materials Science and Engineering – A first course" 5th Edition, Prentice Hall, N Van Vlack, LH, "Elements of Materials Science and Engineering". 6th Edition, Addison – Wesl 1989 B. G. Streetman, "Solid state Devices", 5th Ed., Pearson (2006) 	Particle", 2nd ew Delhi, 1998 ey Singapore,					

	BASIC ELECTRICAL ENGINEERING (SET/EE/BT/C203)	
Module Name	Content	No. of Hrs.
DC Networks	Concepts of linear, nonlinear, active, passive, unilateral and bilateral elements; Ideal and practical voltage & current sources – conversion from one from the other; Kirchhoff's laws – statements; Mesh Analysis; Nodal Analysis; Delta-Star & Star-Delta conversion; Superposition principle; Thevenin's theorem – statement, advantages in case of complex networks; explanation & illustration with examples; Norton's theorem, Maximum power transfer theorem, Reciprocity Theorem and it's application	10
Single Phase AC Circuits	Generation of single phase a.c. voltage and determination of average (mean) and RMS (effective) values of voltage and current with special reference to sinusoidal waveforms; Form factor and peak factor for various waves; Representation of sinusoidal time varying quantities as phasors; concepts of reactance, impedance and their representation in complex forms using j operator; Steady state analysis of series R- L-C circuit & its phasor diagram; Concept of power & power factor; Concept of admittance, susceptance in parallel circuits; Analysis of series parallel circuits & phasor diagrams; Resonance in series and parallel circuits.	10
Three Phase Circuits	Generation of 3-phase balanced sinusoidal voltage; star & delta connections; line & phase quantities (current & voltage); Solution of 3-phase star/delta circuits with balanced supply voltage and balanced load; phasor diagram; 3-phase, 4-wire circuits; Measurement of three phase power by two wattmeter method; phasor diagram with balanced load and determination of load power factor from wattmeter readings.	6
Transformers and Rotating Machines	Transformers: Constructional features and principle of operation, concept of ideal transformer under no load & loaded conditions and its equivalent circuit; Practical transformer rating & its equivalent circuit; Autotransformer – principle of operation & relative advantages & disadvantages; Rotating Machine: construction features (stator, rotor & air gap), conditions for production of steady electromagnetic torque; Three phase Induction motor: constructional features and operation; DC Machines: construction features, EMF and Torque expression, Classification of d.c. motors and generators; Stepper motor.	12
Measuring Instruments	DC PMMC instruments – constructional feature and principle of operation; Moving iron meters – construction and principle of operation; Dynamometer type wattmeter; Induction type energy meter construction & principle of operation.	6
	Total No. of Hours	44
Textbooks References	 I.J. Nagrath, "Basic Electrical Engineering," Tata Mc. Graw Hill. A. E. Fitgerald, D.E., Higginbotham and A Grabel, "Basic Electrical Engineering", Mc Graw Hill. Rizzoni, Principles and Applications of Electrical Engineering, TMH V. Del Toro. "Principles of electrical Engineering, "Prentice hall W.H. Hayt & J.E. Kemmerly," Engineering circuit Analysis, "Mc Graw Hill H. Cotton, "Advanced Electrical Technology" Wheeler Publishing 	

BASIC ELECTRONICS(SET/EC/BT/C204)						
Module Name	Content	No. of Hrs.				
Semiconductor	Semiconductor materials- intrinsic and extrinsic types, Ideal Diode as switch, Terminal	10				
Diodes	characteristics of PN diode - p-n junction under open circuit condition, p-n junction under					
	forward bias and reverse bias conditions, p-n junction in breakdown region; Zener diode and					
	applications e.g. voltage regulator; Rectifier Circuits, Clipping and Clamping circuits; LED,					
	Photo Diode.					
Bipolar Junction	Physical structure, physical operation and current-voltage characteristics of NPN transistor; Use	10				
Transistors	of Voltage dependent Current source as an Voltage amplifier; Transistor as an amplifier:					
	Characteristics of CE amplifier; Active region operation of transistor; D.C. analysis of Common					
	Emitter Amplifier: load line analysis; Transistor as a switch: cut-off and saturation modes.					
Field Effect	Enhancement-type MOSFET: structure and physical operation, current-voltage characteristics;	8				
Transistor	MOSFET as a Switch, MOSFET as a Voltage dependent Current source and Amplifier.					
Operation	Ideal Op-amp; Properties of the ideal Operational Amplifier; op-amp application circuits	6				
Amplifier	(assuming ideal op amp): inverting amplifier, non -inverting amplifier, weighted summer,					
	integrator, and differentiator.					
Digital Logic and	Binary, octal and hexadecimal number systems; Methods of base conversions; Binary, octal and	8				
Gates	hexadecimal arithmetic; Representation of signed numbers; Basic logic operations and logic					
	gates; MOSFET Switch Implementation of Logic Gates e.g. Inverter, NAND, NOR. Basic					
	postulates and fundamental theorems of Boolean algebra.					
	Total No. of Hours	42				
Textbooks	1. Agarwal, Anant; Lang, Jeffrey H, "Foundations of Analog and Digital Electronic Circuits", Els	evier Science &				
	Technology Books.					
References	1. V. Del Toro, Principles of Electrical Engineering, PHI					
	2. Rizzoni, Principles and Applications of Electrical Engineering, TMH					
	3. Malvino, Electronic Principles					
	4. R.L.Boylestad & L.Nashelsky, Electronics Devices & Circuit Theory, PHI					

Fundamentals of Information Technology(SET/IT/BT/C205)							
Module Name	Content	No. of Hrs.					
Introduction	Definition of Electronic Computer, History, Generations, Characteristic and Application of Computers, Classification of Computers, Computer Hardware and Basic Computer Organization: CPU- ALU, CU; RAM/ROM, Various I/O devices, Peripherals, Storage Media;	4					
Computer Languages	Binary, Hexadecimal Number System; Basic Binary Logic Operations; Binary Addition and Subtraction; Generation of Languages, Assembly Language, High level language; Translators, Interpreters, Compilers, Compilers; Flow Charts, Dataflow Diagram, Pseudo codes; Assemblers, Introduction to 4GLs;	6					
OS & Office	Software- System and Application Software; Elementary Concepts in Operating System; Textual Vs GUI Interface, Introduction to DOS, MS Windows	4					
Computer Networks	Elements of Communication system; Brief Introduction to Computer Networks- Introduction of LAN and WAN. Network Topologies, Client-server Architecture;	6					
Internet	Internet & World Wide Web, Hypertext Markup Language, DHTML, WWW, Gopher, FTP, Telnet, Web Browsers, Net Surfing, Search Engines, Email; Introduction to Web Development, Static and Dynamic Pages.	6					
IT Application and Multi media	Basic Awareness of NICNET and ERNET; E Commerce, E governance; Brief Introduction to Different Formats of Image, Audio, Video;	6					
Information Concepts & Processing:	Definitions of Information, Need of information, quality of information, value of information, concept of information, Entropy category and Level of information in Business Organization, Data Concepts and Data Processing, Data Representation, Application of IT to E-commerce, Electronic Governance, Multimedia, Entertainment, Introduction to Information System.	8					
	Total No. of Hours	40					
Textbooks	 Sinha, Sinha, "Computer Fundamentals", Yadav R. P., "Information Technology" 						
References	 D S Yadav, "Foundations of IT", New Age, Delhi Rajaraman, "Introduction to Computers", PHI Peter Nortans "Introduction to Computers", TMH. Patterson D.A. & Hennessy J.L., "Computer Organization and Design", Morgan Kaufmann Publisi 	hers					

GENERAL ENGLISH (AECC206)					
Module Name	Content	No. of Hrs.			
Introduction	Theory of Communication, Types and modes of Communication	7			
Language of Communication	Verbal and Non-verbal (Spoken and Written) Personal, Social and Business Barriers and Strategies Intra- personal, Inter-personal and Group communication	8			
Speaking Skills	Monologue Dialogue Group Discussion Effective Communication/ Mis- Communication Interview Public Speech	5			
Reading and Understanding	Reading and Understanding Close Reading Comprehension Summary Paraphrasing Analysis and Interpretation Translation(from Indian language to English and vice-versa) Literary/Knowledge Texts	8			
Writing Skills	Documenting Report Writing Making notes Letter writing	4			
	Total No. of Hours	32			
Textbooks	 Department of English, Delhi University, "Fluency in English - Part II", Oxford University Press, 2006. "Business English", Pearson, 2008. "Language, Literature and Creativity", Orient Blackswan, 2013. Gauri Mishra, Ranjana Kaul, Brati Biswas, "Language Through Literature" 				

PHYSICS LAB (SET/SH/BT/C207)					
Module Name		Content	No. of Hrs.		
Module 1	1. 2. 3	To determine the wavelength of monochromatic light by Newton's ring method. To determine the wavelength of monochromatic light by Fresnel's biprism. To determine the focal length of two lenses by nodal slide and locate the position of cardinal points.	6x2		
	4.	To determine the wavelength of spectral lines using plane transmission grating.			
Module 2	1. 2.	Measurement of Magnetic susceptibility- Quincke's Method / Gouy's balance. Mapping of magnetic field	2x2		
Module 3	1. 2.	Measurement of e/m of electron – Thomson's experiment Determination of Planck's constant.	2x2		
Module 4	1.	To draw hysteresis curve of a given sample of ferromagnetic material and from this to determine magnetic susceptibility	4x2		
	2.	To study the Hall effect and determine Hall coefficient, carrier density and mobility of a given semiconductor material.			
	3.	To determine the energy band gap of a given semiconductor material.			
		Total No. of Hours	28		

BASIC ELECTRICAL ENGINEERING LAB (SET/EE/BT/C108)					
Module Name	Content	No. of Hrs.			
Module 1	1. Study of analog voltmeter and ammeter	3x2			
	2. Study of digital multimeter				
	3. Study of CRO				
Module 2	1. Verification of KCL and KVL.	3x2			
	2. Verification of Thevenin, Norton Network theorems.				
	3. Verification of Superposition Network theorem.				
	4. Verification of MPT Network theorem				
Module 3	1. Measurement of efficiency of a single phase transformer by load test.	5x2			
	2. Determination of parameters and losses in single phase transformer by OC and SC test.				
	3. Measurement of power in a three phase circuit by two wattmeter method.				
	4. Verification of Single Phase Energy Meter constant.				
	5. Study of the phase induction motor.				
Module 4	1. Verification of junction diode, zener diode characteristics.	4x2			
	2. Verification of Clipping and clamping circuits.				
	3. Verification of H.W. and F.W. rectifier circuit: with and without filter circuit and to determine the ri	pple			
	factor.				
	4. Verification of CE characteristics of BJT.				
	Total No. of He	ours 30			

Information Technology Lab (SET/IT/C209)							
Module Name	Content						
		Hrs.					
Module 1	1. Creation of a Word Document.	14x2					
	2. Creation of a Document in spredsheet and using Formulae						
	3. Use of Search Engine and World Wide Web						
	4. Creation of email id and email						
	5. Use of FTP service.						
	6. Creation of Static Web Pages using HTML						
	7. Creation of Page Using Java Script						
	(Besides these additional experiements can be included to give hands on experience to students.						
	Students can be provided opportunity to work on any Information System to give them better						
	understanding of Information System)						
	Total No. of Hours	28					

ENGINEERING GRAPHICS (SET/ME/BT/C210)							
Module Name	Content	No. of Hrs.					
Introduction to Engineering Graphics	Drawing instruments and their use – Different types of lines - Lettering & dimensioning – Familiarization with current Indian Standard Code of Practice for Engineering Drawing. Scales, Plain scales, Diagonal scales, Vernier scales. Introduction to orthographic projections- Horizontal, vertical and profile planes – First angle and third angle projections – Projection of points in different coordinates – Projections of lines inclined to one of the reference planes.	12					
Projections of lines and planes	Projections of lines inclined to both the planes – True lengths of the lines and their angles of inclination with the reference planes – Traces of lines. Projection of plane lamina of geometric shapes inclined to one of the reference planes – inclined to both the planes, Traces of planes. Projections on auxiliary planes.	12					
Projections of polyhedral and solids	Projections of polyhedral and solids of revolution, projection of solids with axis parallel to one of the planes and parallel or perpendicular to the other plane – Projections with the axis inclined to one of the planes. Projections of Solids with axis inclined to both the planes – Projections of spheres and combination of solids.	12					
Sections of solids	Sections of solids by planes perpendicular to at least one of the reference planes – True shapes of sections. Developments, development of the lateral surface of regular solids like, prisms, pyramids, cylinders, cones and spheres, development of truncated solids Isometric projection – Isometric scale – Isometric views – Isometric projection of prisms, pyramids, cylinders, cones, spheres and solids made by combination of the above.	12					
	Total No. of Hours	48					
Textbooks	1. Bhatt N. D, Elementary Engineering Drawing, Charotar Publishing House, Anand, 2002						
References	 Narayana K L & Kannaiah P, Engineering Graphics, Tata McGraw Hill, New Delhi, 1992 Luzadder W J, Fundamentals of Engineering Drawing, Prentice Hall of India, New Delhi, 2001 Thomas E French & Charkes J V, Engineering Drawing & Graphing Technology, McGraw Hill Book Co 1993 Venugopal K, Engineering Drawing & Graphics, New Age International Pvt. Ltd., New Delhi, 1994 	o, New York,					

Theory		L	Т	Р	T.A	C.T	TOT	ESE.	SUB.	Credit
Code	Course]				.			TOTAL	
SET/SH/BT/C301	Mathematics III	3	1	-	10	20	30	70	100	3
SET/IT/BT/C302	Computer Based Numerical &	3	1	-	10	20	30	70	100	3
	Statistical Techniques									
SET/IT/BT/C303	Principle of Programming	3	1	-	10	20	30	70	100	3
	Language									
SET/IT/BT/C304	Data Structures Using C	3	1	-	10	20	30	70	100	3
SET/EC/BT/C305	Digital Electronics	3	1	-	10	20	30	70	100	3
SET/IT/BT/C306	Computer Based Numerical &	-	-	1	30	-	30	70	100	1
	Statistical Techniques Lab									
SET/IT/BT/C307	Data Structures Using C Lab	-	-	2	30	-	30	70	100	1
SET/EC/BT/C308	Digital Electronics Lab	-	-	1	30	-	30	70	100	1
SET/IT/BT/S309	Seminar	-	-	1	30	-	30	70	100	1
Total	·	15	5	5			270	630	900	20

SEMESTER III

	MATHEMATICS- III (SET/SH/BT/C301)				
Module Name	Content	No. of Hrs.			
Ordinary	ODE of 2nd order with constant coefficients both homogeneous and non-homogeneous types with	14			
Differential	applications to electrical and mechanical systems. Difference equations and their solutions by Z				
Equations	transform. Series solutions of ODE of 2nd orders with variable coefficients with special emphasis to				
	the differential equations of Legendre, Bessel and Chebyser. Legendre's polynomials, Chabyshev polynomials and Bessel's functions and their properties.				
Integral	Fourier transform and integral Hankel transforms and Hilbert transforms and their properties, some	8			
Transforms	simple applications.				
Partial	Linear PDE with constant coefficients of 2nd order and their classifications. PDE of parabolic, elliptic	10			
Differential	and hyperbolic type with illustrative examples. Separation of variables method for solving PDE, such				
Equations	as two dimensional heat equations, wave equations and Laplace equations.				
Functions of a	Analytic functions, Cauchy Riemann equations, harmonic functions line integral in the complex plane,	14			
Complex	Cauchy's integral theorem, Cauchy's integral formula derivatives of analytic function, Liouvilles				
Variable	theorem, fundamental theorem of algebraic representation of a function by power series, Taylor's &				
	Laurant series, poles & singularity of zeros. Residue theorem, conformal mapping, linear fractional				
	transformation, special linear transformations.				
	Total No. of Hours	46			
Textbooks	1. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers				
	2. H K Das, "Advanced Engineering Mathematics", S Chand				
	3. Erwin Kreyszig, "Advanced Engineering Mathematics"				
References	1. Paopoulis, "Signal Analysis", TMH				

COMPUTER BASED NUMERICAL & STATISTICAL TECHNIQUES (SET/IT/BT/C302)					
Module Name	Content	No. of Hrs.			
Errors in numerical computations	Errors in numerical computations, mathematical preliminaries, errors and their analysis, machine computations, computer software	6			
Algebraic &	Bisection method, iteration method, method of false position, rate of convergence, method for complex	6			
Transcendental	root, Muller's method, quotient difference method, Newton's-Raphson methods.				
Equation					
Interpolation	Introduction, errors in polynomial interpolation, finite difference, decision of errors, Newton's formulae for interpolation, Guass, Stirling, Bessel's, Everett's formulae, interpolation by unevenly spaced points, Lagrange interpolation formula, divided difference, Newton's general interpolation, formula. Curve Fitting.	10			
Cubic Spline &	Introduction, method of least square curve fitting procedures, fitting a straight line, curve fitting by	8			
Approximation	sum of exponentials, data fitting with cubic splines, approximation of functions.				
Numerical Integration	Introduction, numerical differentiation, numerical integration, trapezoidal rule, Simpson 1/3 rule,	6			
& Differentiation	Simpson 3/8 rule, Booles and Weddles rule, Euler-Maclariaun formula, Gaussian formula, numerical evaluation of singular integrals.				
Statistical Computation	Frequency chart, regression analysis, least square fit, linear & non linear regression, multiple regression, statistical control methods.	6			
	Total No. of Hours	42			
Textbooks	1. Sashtry : Introductory Method of Numerical Analysis, PHI				
	2. Balaguruswamy : Numerical Methods, TMH				
References	 Jain, Iyengar, Jain : Numerical Methods for Scientific& Engg. Computation, New Age Gerald & Wheatley : Applied Numerical Analysis, Addison Wesley 				

PRINCIPLES OF PROGRAMMING LANGUAGES (SET/IT/BT/C303)				
Module Name	Content	No. of Hrs.		
Introduction	Characteristics of programming Languages, Factors influencing the evolution of	6		
	programming language, developments in programming methodologies, desirable features			
	and design issues.			
Programming	Structure and operations of translators, software simulated computer, syntax, semantics,	8		
Language Processors	structure, virtual computers, binding and binding time.			
Data Types	Data object variables, constants, data types, elementary data types, declaration, assignment	12		
	and initialization, enumeration, characters, strings. Structured data type and objects:			
	Specification of data structured types, vectors and arrays, records, variable size data			
	structure, pointers and programmer constructed data structure, Sets files. Abstractions,			
	encapsulations, information hiding, sub programmes, abstract data types			
Sequence Control	Implicit and Explicit sequence control, sequence control with within expression and	8		
	statements, recursive sub programmes, exception handling, coroutines, Scheduled sub			
	programmes, concurrent execution. Data control referencing environments, static and			
	dynamic scope, local data local data referencing environment,			
Storage Management	Major run time requirements, storage management phases, static storage management, stack	8		
	based, heap based storage management.			
	Total No. of Hours	42		
Textbooks	1. Terrance W Pratt, "Programming Languages: Design and Implementation" PHI			
	2. E Horowitz, "Programming Languages", 2nd Edition, Addison Wesley			
References	1. Sebesta, "Concept of Programming Language", Addison Wesley			
	2. Fundamentals of Programming Languages, Galgotia.			

DATA STRUCTURES USING C (SET/IT/BT/C304)					
Module Name	Content	No. of Hrs.			
Elementary Data Organization	Elementary Data Organization, Structure operations, Algorithm Complexity and Time-Space trade-off.	6			
Arrays and Linked list	Representation and Analysis, Single and Multidimensional Arrays, address calculation, application of arrays, String in C, Array as Parameters, Ordered List, Sparse Matrices and Vectors. Representation and Implementation of Singly Linked Lists, Two-way Header List, Traversing and Searching of Linked List, Overflow and Underflow, Insertion and deletion to/from Linked Lists, Insertion and deletion Algorithms, Doubly linked list, Linked List in Array, Polynomial representation and addition, Generalized linked list, Garbage Collection and Compaction.	12			
Stacks and Queues	Array Representation of Stack, Linked Representation of Stack, Operations Associated with Stacks, Application of stack: Conversion of Infix to Prefix and Postfix Expressions, Evaluation of postfix expression using stack. Array and linked representation and implementation of queues, Create, Add, Delete, Full and Empty, Circular queues, Dqueues and Priority Queues.	8			
Trees	Binary Trees, Binary tree representation, algebraic Expressions, Complete Binary Tree, Extended Binary Trees, Array and Linked Representation of Binary trees, Traversing Binary trees, Threaded Binary trees, Traversing Threaded Binary trees, Huffman algorithm.	8			
Searching and Sorting	Sequential search, binary search, comparison and analysis. Insertion Sort, Bubble Sorting, Quick Sort, Two Way Merge Sort, Heap Sort, Sorting on Different Keys. Binary Search Tree, Insertion and Deletion in BST, Complexity of Search Algorithm, AVL Trees, B-trees.	8			
	Total No. of Hours	42			
Textbooks	1. Seymour Lipschutz, "Data Structures", TMH				
References	 R. Kruse etal, "Data Structures and Program Design in C", Pearson Education Asia, Delhi-2002. A. M. Tenenbaum, "Data Structures using C & C++", Prentice-Hall of India Pvt. Ltd., New Delh 	ni.			

DIGITAL ELECTRONICS (SET/EC/BT/C305)									
Module Name	Content	No. of Hrs.							
Introduction	Positional number system; Binary, octal and hexadecimal number systems; Methods of base	6							
	conversions; Binary, octal and hexadecimal arithmetic; Representation of signed numbers; Fixed								
	and floating point numbers. Definition and specification of combination logic; Truth table; Basic								
	logic operation and logic gates; Binary coded decimal codes; Gray codes.								
Boolean Algebra and	Basic postulates and fundamental theorems of Boolean algebra; Standard representation of logic	4							
Switching Functions	functions - SOP and POS forms; Simplification of switching functions - K-map and Quine-	nctions - SOP and POS forms; Simplification of switching functions - K-map and Quine-							
	McCluskey tabular methods;								
Logic Families	Diode, BJT and MOSFET as a switch. Introduction to different logic families;	10							
	Electrical characteristics of logic gates - logic levels and noise margins, fan-out, propagation								
	delay, transition time, power consumption and power-delay product; circuit description and								
	operation; RTL; DTL, HTL, TTL and sub families, Brief idea of ECL, CMOS BI-CMOS.								
Combinational Logic	Arithmetic modules: adders, subtractors and ALU; Design examples. Decoders, encoders,	6							
	multiplexers and de-multiplexers; Parity circuits and comparators.								
Sequential Logic	Basic sequential circuits- latches and flip-flops: SR-latch, D-latch, D flip-flop, JK flip-flop, T flip-	12							
	flop and their inter-conversions; Timing hazards and races; Meta-stability; Analysis of state								
	machines using D flip-flops and JK flip-flops; Definition of state machines, synchronous								
	sequential logic, shift register, counters-ripple and mod counters.								
Semiconductor	RAM, ROM, Content Addressable Memory, Charge Coupled Device Memory. PLAs, PALs and	4							
Memories	their applications; Sequential PLDs and their applications;								
	Total No. of Hours	42							
Textbooks	1. Morris Mano, "Digital Design"								
References	1. Taub, Schilieng, "Digital Integrated Electronics"								
	2. Anad Kumar, "Digital principles and application"								
	3. John F Wakerly, "Digital Design: Principles and Practices", Prentice Hall								
	4. Thomas L. Floyd, "Digital Fundamentals", Pearson/ Prentice Hall								
	5. Ronald J. Tocci, "Digital Systems: Principles and Applications", Pearson/ Prentice Hall								
	6. Charles Roth, "Fundamentals of Logic Design", Jaico Publishing House								

COMPUTER BASED NUMERICAL & STATISTICAL TECHNIQUES LAB (SET/IT/BT/C306)					
Module Name	Content	No. of Hrs.			
Errors in numerical	Write a Program to deduce errors involved in polynomial interpolation.	6			
computations					
Algebraic &	Write a Program for algebraic and transcendental equations using bisection, iterative, method of	6			
Transcendental Equation	false position, also give rate of conversions of roots in tabular form for each of these methods.				
Interpolation	Write a Program to implement Bessel's functions, Newton's, Stirling's, Lagrange's.	6			
Cubic Spline &	Write a Program to implement method of least square curve fitting.	6			
Approximation					
Numerical Integration &	Write a Program to Implement numerical differential using trapezoidal, Simpson 3/8 rules.	6			
Differentiation					
Statistical Computation	Write a Program to show frequency chart, regression analysis, linear square fit and polynomial	6			
-	fit.				
	Total No. of Hours	36			

DATA STRUCTURES USING C LAB (SET/IT/BT/C307)						
Module Name Content						
Arrays	Array implementation of Stack, Queue, Circular Queue.	4X2				
Linked List	Linked List implementation of Stack, Queue, Circular Queue.	4X4				
Tree	Implementation of Tree, Binary Tree, Tree Traversal, Binary Search Tree, Insertion and Deletion in BST.	4X4				
Searching and Sorting	Implementation of Searching and Sorting Algorithms.	4X2				
	Total No. of Hours	48				

DIGITAL ELECTRONICS LAB (SET/EC/BT/C308)					
Module Name	Content	No. of Hrs.			
Experiments	1. Combinational Logic design using basic gates (Code Converters, Comparators).	8x2			
	2. Combinational Logic design using decoders and MUXs.				
	3. Arithmetic circuits - Half and full adders and subtractors.				
	4. Arithmetic circuits – design using adder ICs, BCD adder.				
	5. Flip flop circuit (RS latch, JK & master slave) using basic gates.				
	6. Asynchronous Counters				
	7. Synchronous counters, Johnson & Ring counters.				
	8. Sequential Circuit designs (sequence detector circuit).				
	9. Transfer Characteristics, Measurement of Sinking and Sourcing currents etc. of TTL gates				
Model Sim	Writing and simulating VHDL programs for adder, decoder, multiplexer, de-multiplexer, up/down	8x2			
Simulations	counter, universal shift register, Sequence Detector etc.				
	Total No. of Hours	32			

SEMINAR (SET/IT/BT/S309)				
Module Name	Content	No. of Hrs.		
Module 1	Every Student shall deliver a seminar for 30 minutes. Topic for the seminar shall be decided in consultation with faculty. Topic can be related to an application or a technology which makes use of Information Technology. Students should search for the related literature and prepare a presentation. Evaluation shall be based on content, presentation and active participation.	12x2		
	Total No. of Hours	24		
References	1. Internet and Journals/Magazines			

Theory		L	Т	Р	T.A	C.T.	TOT	ESE.	SUB.	Credit
Code	Course								TOTAL	
SET/IT/BT/C401	Computer Organization	3	1	-	10	20	30	70	100	3
SET/IT/BT/C402	Operating System	3	1	-	10	20	30	70	100	3
SET/IT/BT/C403	Object Oriented Programming using C++	3	1	-	10	20	30	70	100	3
SET/IT/BT/C404	Discrete Structure	3	1	-	10	20	30	70	100	3
SET/IT/BT/C405	Management Information System	3	1	-	10	20	30	70	100	3
SET/IT/BT/C406	Computer Organization Lab	-	-	1	30	-	30	70	100	2
SET/IT/BT/C407	Operating System Lab	-	-	1	30	-	30	70	100	1
SET/IT/BT/C408	Object Oriented Programming using C++ Lab	-	-	1	30	-	30	70	100	1
SET/IT/BT/S409	Mini Project -1	-	-	2	30	-	30	70	100	1
Total		15	5	5			270	630	900	20

SEMESTER IV

	COMPUTER ORGANIZATION (SET/IT/BT/C401)				
Module Name	Content	No. of Hrs.			
Fundamental	Performing of arithmetic or logical operations, Fetching a word from memory, storing a word in	10			
Concepts	memory, Bus and Memory Transfers, Bus Architecture, Arithmetic Algorithms (addition, subtraction,				
	Booth Multiplication), General register organization, Register Transfers, Register Transfer Language.				
Control Design	Execution of a complete instruction, Multiple-Bus organization, Hardwired Control, Micro	8			
	programmed control, Microinstruction, address sequencing, Microinstruction with Next-address field,				
	Prefetching Microinstruction.				
Processor	Processor Organization: Stack organization, Addressing mode, Instruction format, Data transfer &	8			
Design	manipulations, Program Control, Reduced Instruction Set Computer. Assembly level programs,				
Input-Output	I/O Interface, Modes of transfer, Interrupts & Interrupt handling, Direct Memory access, Input- Output	8			
Organization	processor, Serial Communication.				
Memory	Memory Hierarchy, Main Memory (RAM and ROM Chips), Auxiliary memory, Cache memory,	8			
Organization	Virtual Memory, Memory management hardware.				
	Total No. of Hours	42			
Text Books	1. Computer System Architecture, M. Mano(PHI)				
References	1. Computer Organization, Vravice, Zaky & Hamacher (TMH Publication)				
	2. Structured Computer Organization, Tannenbaum(PHI)				
	3. Computer Organization, Stallings(PHI)				

OPERATING SYSTEMS (SET/IT/BT/C402)						
Module Name	Content	No. of Hrs.				
Fundamental	Operating System and its Functions, Evolution of Operating Systems: Batch, Interactive, Time	10				
Concepts	Sharing and Real Time System, Computer System Structure: System Operations, I/O					
•	Structure, Storage Structure, Storage Hierarchy, System Protection. Operating System					
	Structure: System Components, Operating System Services, System Calls, System Programs,					
	System Structure.					
Process and CPU	Process Concept, Process Scheduling, Operations on Processes, Cooperating Processes,	10				
Scheduling	Communication Between Processes: Producer Consumer Problem, Shared Memory, Inter					
	Processes Communication, <u>CPU Scheduling:</u> Scheduling Concept, Performance Criteria					
	Scheduling Algorithms, Multiprocessor Scheduling, Algorithm Evaluation.					
Process	Critical Section Problem, Semaphores, Classical Problems in Concurrency, <u>Deadlocks:</u> System	8				
Synchronization	Model, Deadlock Characterization, Methods for Handling Deadlocks: Prevention, Avoidance					
and Deadlock	and Detection and Recovery.					
Memory	Basic Concepts, Swapping, Contiguous Memory Allocation, Non-contiguous Memory	8				
Management	Allocation, Paging, Segmentation, Segmentation with Paging, Virtual Memory: Basic					
	Concept, Demand Paging, Performance of Demand Paging, Paged Replacement Algorithms,					
	Allocation of Frames, Thrashing.					
File System and	File System: File Concept, Access Methods, File Organization, Directory Structure, File	8				
Mass Storage	System Mounting, File Sharing, Protection, Implementation Issues: Directory Implementation,					
Structure	Allocation Methods, Free Space Management. Mass Storage Structure: Disk Structure, Disk					
	Scheduling, Disk Management.					
	Total No. of Hours	44				
Text Books	1. Galvin, Silberschatz, Gagne "Operating System Concepts", Wiley					
References	1. Tannenbaum, "Operating System Design and Implementation", PHI.					
	2. Milenekovie, "Operating System Concept", McGraw Hill.					
	2. Petersons, "Operating Systems", Addision Wesley.					
	3. Dietal, "An Introduction to Operating System", Addision Wesley.					
	4. Gary Nutt, "Operating System, A Modern Perspective", Addision Wesley.					

<u>3</u>0

	OBJECT ORIENTED PROGRAMMING USING C++ (SET/IT/BT/C403)				
Module Name	Content	No. of Hrs.			
Fundamental Concept	Object Oriented Programming Paradigm, Basic concepts of OOP, Objects, Classes, Data abstraction and Encapsulation, Inheritance, Polymorphism, Dynamic binding, Message passing, Applications of OOP. Introduction to C++, structure of C++ Program. Tokens, Keywords, Identifiers and Constants, Data Types, Declaration and Dynamic Initialization of Variables, Reference Variables, Operators in C++, Expressions and their types, Control Structure, Functions in C++, Function Overloading.	10			
Classes, Objects and Constructors	C Structure Revisited, Specifying a class, Defining Member functions, Making an Outside function inline, nesting of member function, Private member function, arrays within class, Memory allocation for objects, static data members and member functions, Arrays of objects, Object as a function arguments, Friend function, Returning objects, pointers to members local classes. Constructors, Parameterized constructors, Multiple constructors in a class, constructors with default arguments, dynamic initialization of objects, copy constructor, dynamic constructors, constructing 2-D arrays, Destructors.	8			
Inheritance	Derived class declaration, forms of inheritance, inheritance and member accessibility, constructors and destructors in derived classes, constructors invocation and data members initialization, overloaded member functions, types of inheritance.	8			
Polymorphism	Defining operator overloading, Overloading Unary and Binary operators, Operator Overloading using friends, Manipulation of strings using operators, Rules for overloading operators. Need for virtual functions, pointer to derived class objects, array of pointers to base class objects, pure virtual functions, virtual destructor, Concatenation of strings.	6			
Streams Computation & Exception Handling	Predefined console streams, hierarchy of console stream classes, unformatted and formatted console I/O operations, manipulators, Files: Hierarchy of file stream classes, opening and closing, testing for errors, modes, pointers and their manipulators, sequential access. Exceptions and Exception handling mechanism, throwing and catching mechanism, Re-throwing an exception, list of exceptions, handling uncaught exceptions.	10			
	Total No. of Hours	42			
Textbooks	1. Balagurusamy "Object Oriented Programming with C++", TMH				
References	 Budd,"Object Oriented Programming ", Addison Wesley. Mastering C++ K.R Venugopal Rajkumar, TMH. C++ Primer, "Lip man and Lajole", Addison Wesley. 				

DISCRETE STRUCTURE (SET/IT/BT/C404)				
Module Name	Content	No. of Hrs.		
Set Theory	Countable and uncountable sets, Venn Diagrams, proofs of some general identities on sets Relation:	12		
	Definition, types of relation, composition of relations, Pictorial representation ofm relation,			
	equivalence relation, partial ordering relation, Type of functions, one to one, into and onto function,			
	inverse function, composition of functions, recursively defined functions, mathematical induction			
	(simple and strong), pigeonhole principle, prove by contradiction.			
Algebraic	Properties, Semi Groups, Monoid, Groups, Abelian group, properties of groups, Subgroup, cyclic	6		
Structures	groups, Cosets, factor group, Permutation groups, Normal subgroup, Homomorphism and			
	isomorphism of Groups, Rings and Fields.			
Posets, Hasse	Introduction, ordered set, Hasse diagram of partially, ordered set, isomorphic ordered set, well	6		
Diagram and	ordered set, properties of Lattices, bounded and complemented lattices.			
Lattices				
Propositional	Proposition, First order logic, Basic logical operation, truth tables, tautologies, Contradictions,	10		
Logic	Algebra of Proposition, logical implications, logical equivalence, predicates, Universal and existential quantifiers.			
Permutation &	Recurrence Relation, Generating function., Permutation & Combination, Probabilistic Permutation &	8		
Combination	Combination.			
	Total No. of Hours	42		
Text Books	1. Liptschutz, Seymour, "Discrete Mathematics", McGraw Hill. 3rd Edition			
	2. Trembley, J.P & R. Manohar, "Discrete Mathematical Structure with Application to Computer Science", McGraw			
	Hill, Reprint 2010			

References	1. K.H.Rosen, "Discrete Mathematics & Its Application with Combinatory and Graph Theory", TMH
	(6th ed)
	2 CL Liu "Discrete Mathematics" TMH
	2. C.L.Elu, Discrete Mattematics, 1 Mil.

	MANAGEMENT INFORMATION SYSTEM (SET/IT/BT/C405)				
Module Name	Content	No. of Hrs.			
Information Systems	Information system in business, fundamentals of information systems, Solving business problems with information systems, Types of information systems, effectiveness and efficiency criteria in information system.	12			
Management Information System	gement nation nDecision Support Systems, Information Resources Management, End user computing, Concept of an MIS, Structure of a Management Information Systems. Concepts of Planning and Control: Concept of organizational planning. The Planning Process, Computational support for planning, control process.				
Information Technology	Internet & electronic commerce, Internet, Extranet & Enterprises Solutions, Information System for Business Operations, Information System for Managerial Decision Support, Information System for Strategic Advantage.	10			
Enterprise of MIS	Enterprise & Global management, Security & Ethical challenges, Planning & Implementing changes. Enterprise Resource planning. Supply chain Management, Customer Relationship Management, and Procurement Management.	8			
	Total No. of Hours	42			
Text Books	O. Brian, "Management Information System" TMH				
References	 Gordon B. Davis & Margrethe H. Oison, "Management Information System" TMH O Brian, "Introduction to Information Systems" McGraw Hill Murdic, "Information System for Modern Management" PHI 				

	COMPUTER ORGNIZATION LAB (SET/IT/BT/C406)						
Module Name	Module Name Content						
Experiments /	1. Bread Board Implementation of Flip-Flops.	12x2					
Spice Simulations	2. Experiments with clocked Flip-Flop.						
	3. Design of Counters.						
	4. Bread Board implementation of counters & shift registers.						
	5. Implementation of Arithmetic algorithms.						
	6. Bread Board implementation of Adder/Subtractor (Half, Full)						
	7. Bread Board implementation of Binary Adder.						
	8. Bread Board implementation of Seven Segment Display.						
	9. Programming in Assembly Language.						
	Total No. of Hours	24					

OPERATING SYSTEMS LAB (SET/IT/BT/C407)				
Module Name	Content	No. of Hrs.		
Module 1	1. Simulation of the CPU Scheduling algorithms	12x2		
	a) Round Robin b) SJF c) FCFS d) Priority			
	2. Simulation of MUTEX and SEMAPHORES.			
	3. Simulation of Bankers Deadlock Avoidance and Prevention algorithms.			
	4. Implementation of Process Synchronization			
	(Reader-Writer and Dining Philosopher's Problem)			
	5. Simulation of Page Replacement Algorithms a) FIFO b) LRU c) LFU			
	6. Simulation of Paging Techniques of memory management.			
	7. Simulation of File allocation Strategies a) Sequential b) Indexed c) Linked			
	8. Simulation of File organization techniques			
	a) Single Level Directory b) Two Level c) Hierarchical d) DAG			
	Total No. of Ho	ours 24		

OBJECT ORIENTED PROGRAMMING USING C++ LAB (SET/IT/BT/C408)									
Module Name		Content							
Module 1	1.	Implementation of input and output statements.	12x2						
	2.	Implementation of Control statements.							
	3.	Implementation of Functions.							
	4.	Implementation of Arrays							
	5.	Implementation of Classes and Constructor and Destructor.							
	6.	Implementation of Files.							
	7.	Implementation of OOP's Concepts (Inheritance, Polymorphism, Encapsulation, Friend							
		and Static Functions)							
		Total No. of Hours	24						

MINI PROJECT – 1(SET/IT/BT/S409)						
Module Name	Module Name Content No. of Hrs.					
Module 1	Mini Project-1 shall be based on C/C++.	24x2				
	Total No. of Hours	48				

Theory		L	Т	Р	T.A	C.T.	TOT	ESE.	SUB.	Credit
Code	Course								TOTAL	
SET/IT/BT/C501	Database Management System	3	1	-	10	20	30	70	100	3
SET/IT/BT/C502	Computer Networks	3	1	-	10	20	30	70	100	3
SET/IT/BT/C503	Design and Analysis of Algorithms	3	1	-	10	20	30	70	100	3
SET/IT/BT/C504	Theory of Automata and Formal Language	3	1	-	10	20	30	70	100	3
SET/IT/BT/C505	Software Engineering	3	1	-	10	20	30	70	100	3
SET/IT/BT/C506	DBMS Lab	-	-	1	30	-	30	70	100	2
SET/IT/BT/C507	Computer Networks Lab	-	-	1	30	-	30	70	100	1
SET/IT/BT/C508	Design and Analysis of Algorithms Lab	-	-	2	30	-	30	70	100	1
SET/IT/BT/S509	Seminar	-	-	1	30	-	30	70	100	1
Total			5	5			270	630	900	20

SEMESTER V

DATABASE MANAGEMENT SYSTEM (SET/IT/BT/C501)			
Module Name	Content	No. of Hrs.	
Module 1	<u>Fundamental Concepts:</u> Database System Vs File System, Database System Concepts and Architecture, Data Models, Schema and Instances, Data Independence and Database language and Interfaces, Data Definition Language, Data Manipulation Language, Overall Database Structure.	8	
Module 2	<u>Relationship Models:</u> ER Model Concepts, Concepts of Super Key, Candidate Key, Primary Key, Notation for ER Diagram, Specialization, Generalization, Aggregation, Reduction of ER Diagrams to Tables, Extended ER model, Relationships of Higher Degree. Relational Data Model and Language, Integrity Constraints, Relational Algebra, Tuple Relational Calculus and Domain Relational Calculus.	6	
Module 3	Introduction to SQL: Characteristics of SQL. Advantage of SQL. SQL Data Types and Literals. Types of SQL Commands, SQL Operators and Their Procedure, Tables, Views and Indexes, Queries and Sub Queries, Aggregate Functions, Insert, Update and Delete Operations. Joins, Unions, Intersection, Minus, Assertions, Triggers, Introduction to PL/SQL, Cursors.	8	
Module 4	Database Design & Normalization: Functional Dependencies, Normal Forms: First, Second, Third Normal Forms, BCNF, Inclusion Dependencies, Lossless Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design.	10	
Module 5	Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Concurrency Control Techniques: Concurrency Control, Locking Techniques for Concurrency Control, Time-Stamp Based Protocols for Concurrency Control, Validation Based Protocol,	12	
	Total No. of Hours	44	
Text Books	1. Korth, Silbertz, Sudarshan, "Database Concepts", McGraw Hill		
References	1. Elmasri, Navathe, "Fundamentals Of Database Systems", Addision Wesley		

COMPUTER NETWORKS (SET/IT/BT/C502)							
Module Name	Content						
Network	Goals and Applications of Networks, The OSI reference model, services, Network Topology Design -	10					
Structure and	Delay Analysis, Back Bone Design, Local Access Network Design. Physical Layer Transmission Media,						
Architecture	Switching methods, ISDN, Terminal Handling.						
Medium Access	Medium Access sub layer - Channel Allocations, LAN protocols - ALOHA protocols - Overview of	8					
Sub layer	IEEE standards - FDDI. Data Link Layer - Elementary Data Link Protocols, Sliding Window protocols,						
	Error Handling.						
Network Layer	Network Layer - Point - to Pont Networks, routing, Congestion control. Internetworking -TCP / IP - IP	6					
	packet, IP address, IPv6.						
Transport Layer	Transport Layer - Design issues, connection management, session Layer- Design issues, remote	10					
procedure call. Presentation Layer-Design issues, Data compression techniques, cryptography - TCP -							
	Window Management.						
Application	File Transfer, Access and Management, Electronic mail, Virtual Terminals, Other application, Example	10					
Layer	Networks - Internet and Public Networks.						
	Total No. of Hours	44					
Textbooks	1. Forouzen, "Data Communication and Networking", TMH						
References	1. A.S. Tanenbaum, "Computer Networks", 3rd Edition, Prentice Hall India, 1997.						
	2. S. Keshav, "An Engineering Approach on Computer Networking", Addison Wesley, 1997.						
	3. W. Stallings, "Data and Computer Communication", Macmillan Press, 1989.						

	DESIGN & ANALYSIS OF ALGORITHMS (SET/IT/BT/C503)				
Module Name	Content	No. of Hrs.			
Fundamental	Algorithms, Analysis of algorithms, Growth of Functions, Master's Theorem, Designing of	10			
Concepts	Algorithms.				
Sorting and order	Heap sort, Quick sort, Sorting in Linear time, Medians and Order Statistics. Advanced Data	10			
Statistics	Structure: Red-Black Trees, Augmenting Data Structure. B-Trees, Binomial Heaps, Fibonacci				
	Heaps, Data Stricture for Disjoint Sets.				
Design and Analysis	Dynamic Programming, Greedy Algorithms, Amortized Analysis, Back Tracking. 10				
Graph Algorithms	orithms Elementary Graphs Algorithms, Minimum Spanning Trees, Singlesource Shortest Paths, All-				
	Pairs Shortest Paths, Maximum Flow, and Traveling Salesman Problem. Selected Topics:				
	Randomized Algorithms, String Matching, NP Completeness, Approximation Algorithms.				
	Total No. of Hours	42			
Textbooks	1. Coreman, Rivest, Lisserson, "Algorithm", PHI.				
References	1. Basse, "Computer Algorithms: Introduction to Design & Analysis", Addision Wesley.				
	2. Horowitz & Sahani, "Fundamental of Computer Algorithm", Galgotia.				

THEORY OF AUTOMATA & FORMAL LANGUAGES (SET/IT/BT/C504)					
Module Name	Content	No. of Hrs.			
Finite Automata	Introduction to defining language, Kleene closures, Arithmetic expressions, defining grammar, Chomsky hierarchy, Finite Automata (FA), Transition graph, generalized transition graph. Nondeterministic finite Automata (NFA), Deterministic finite Automata (DFA), Construction of DFA from NFA and optimization, FA with output: Moore machine, Mealy machine and Equivalence, Applications and Limitation of FA, Arden Theorem, Pumping Lemma for regular expressions, Myhill - Nerode theorem.	12			
Context Free Grammar	Ambiguity, Simplification of CFGs, Normal forms for CFGs, Pumping lemma for CFLs, Decidability of CFGs, Ambiguous to Unambiguous CFG.				
Push Down Automata	Description and definition, Working of PDA, Acceptance of a string by PDA, PDA and CFG, Introduction to auxiliary PDA and Two stack PDA.	10			
Turing Machines	Basic model, definition and representation, Language acceptance by TM, TM and Type – 0 grammar, Halting problem of TM, Modifications in TM, Universal TM, Properties of recursive and recursively enumerable languages, unsolvable decision problem, undecidability of Post correspondence problem, Church's Thesis, Recursive function theory, Godel Numbering.				
	Total No. of Hours	44			
Textbooks	 K.L.P. Mishra and N.Chandrasekaran, "Theory of Computer Science (Automata, Languages Computation)", PHI 	s and			
References	 Hopcroft, Ullman, "Introduction to Automata Theory, Language and Computation", Nerosa House Cohen D. I. A., "Introduction to Computer theory", John Wiley & Sons 	Publishing			

SOFTWARE ENGINEERING (SET/IT/BT/C505)				
Module Name	Content	No. of Hrs.		
Introduction	Software Components, Software Characteristics, Software Crisis, Software Engineering	10		
	Processes, Similarity and Differences from Conventional Engineering Processes, Software			
	Quality Attributes. Software Quality Assurance, Verification and Validation, SQA Plans,			
	Software Quality Frameworks. Software Development Models, Water Fall Model, Prototype			
	Model, Spiral Model, Evolutionary Development Models, Iterative Enhancement Models.			
Software Requirement	Elicitation, Analysis, Documentation, Review and Management of User Needs, Feasibility	10		
Specifications and	Study, Information Modeling, Data Flow Diagrams, Entity Relationship Diagrams, Decision			
Design	Tables, SRS Document. Architectural Design, Low Level Design: Modularization, Design			
	Structure Charts, Pseudo Codes, Flow Charts, Coupling and Cohesion Measures. Design			
	Strategies: Function Oriented Design, Object Oriented Design, Top-Down and Bottom-Up			
	Design.			
Software Measurement	Various Size Oriented Measures, Halestead's Software Science, Function Point (FP) Based	8		
and Metrics	Measures, Cyclomatic Complexity Measures, Control Flow Graphs. Estimation of Various			
	Parameters such as Cost, Efforts, Schedule/Duration, Constructive Cost Models (COCOMO).			
Software Testing	Testing Objectives, Unit Testing, Integration Testing, Acceptance Testing, Regression	8		
	Testing, Testing for Functionality and Testing for Performance, Top-Down and Bottom-Up			
	Testing Strategies, Structural Testing, Functional Testing, Test Data Suit Preparation, Alpha			
	and Beta Testing of Products. Static Testing Strategies.			
Software Maintenance	Need for Maintenance, Categories of Maintenance: Preventive, Corrective and Perfective	6		
	Maintenance, Cost of Maintenance, Software Re-Engineering, Reverse Engineering. Software			
	Configuration Management Activities. Change Control Process, Software Version Control,			
	An Overview of CASE Tools.			
	Total No. of Hours	42		
Textbooks	1. K. K. Aggarwal and Yogesh Singh, "Software Engineering", New Age International Pub	olishers.		
References	1. R. S. Pressman, "Software Engineering: A Practitioners Approach", McGraw Hill.			
	2. Ian Sommerville, "Software Engineering", Addison Wesley.			

DBMS LAB (SET/IT/BT/C506)			
Module Name	Content	No. of Hrs.	
Module 1	1. Creating ER diagrams and Schema Diagrams of real world problems.	12x2	
	2. Creating tables and data population.		
	3. Writing SQL queries using following operators:		
	(a) Logical operators (=,<,>,etc.).		
	(b) SQL operators (Between AND, IN(List), Like, ISNULL and also with negating expressions).		
	(c) Set Operators(UNION, INTERSECT, and MINUS, etc.).		
	4. Writing SQL queries using Character, Number, Date and Group functions.		
	5. Writing SQL queries for extracting data from more than one table (Equi-Join, Non-Equi-Join,		
	Outer Join)		
	6. Creating VIEWS using SQL and performing operation on it.		
	7. Writing ASSERTIONS using SQL		
	8. Writing programs using PL/SQL.		
	9. Use Concepts for ROLL BACK, COMMIT & CHECK POINTS.		
	10. Write queries using CURSORS,		
	11. Write TRIGGRS using PL/SQL		
	12. Create FORMS and REPORTS.		
	Total No. of Hours	24	

Module Name		Content	No. of Hrs.
Module 1	1.	Divide and conquer method (quick sort, merge sort, Strassen's matrix multiplication),	24x2
	2.	Greedy method (knapsack problem, job sequencing, optimal merge patterns, minimal spanning	
	trees).		
	3.	Dynamic programming (multistage graphs, OBST, 0/1 knapsack, traveling salesperson problem).	
	4.	Back tracking (n-queens problem, graph coloring problem, Hamiltonian cycles).	
	5.	Sorting : Insertion sort, Heap sort, Bubble sort	
	6.	Searching : Sequential and Binary Search	
	7.	Selection : Minimum/ Maximum, Kth smallest element	
		Total No. of Hours	48

COMPUTER NETWORKS LAB (SET/IT/C508)					
Module Name	odule Name Content				
Module 1	1. Implementation of the Data Link Layer framing method such as character stuffing and bit stuffing in C.	12x2			
	2. Implementation of CRC algorithm in C.				
	3. Implementation of a Hamming (7,4) code to limit the noise. Code the 4 bit data in to 7 bit data by adding				
	3 parity bits.Implementation will be in C.				
	4. Implementation of LZW compression algorithm in C.				
	5. Write a socket program in C to implement a listener and a talker.				
	6. Write a program in C to encrypt 64-bit text using DES algorithm.				
	Total No. of Hours	24			

	SEMINAR (SET/IT/BT/S509)	
Module Name	Content	No. of Hrs.
Module 1	Every Student shall deliver a seminar for 30 minutes. Topic for the seminar shall be decided in consultation with faculty. Topic can be related to an application or a technology which makes use of Information Technology. Students should search for the related literature and prepare a presentation. Evaluation shall be based on content, presentation and active participation.	12x2
	Total No. of Hours	24
References	1. Internet and Journals/Magazines	

Theory		L	Т	Р	T.A	C.T	TOT	ESE.	SUB.	Credit
Code	Course]				.			TOTAL	
SET/IT/BT/C601	Compiler Construction	3	1	-	10	20	30	70	100	3
SET/IT/BT/C602	Computer Graphics	3	1	-	10	20	30	70	100	3
SET/IT/BT/C603	Cryptography and Network Security	3	1	-	10	20	30	70	100	3
SET/IT/BT/C604	Graph Theory	3	1	-	10	20	30	70	100	3
SET/IT/BT/C605	E-Commerce	3	1	-	10	20	30	70	100	3
SET/IT/BT/C606	Compiler Construction Lab	-	-	1	30	-	30	70	100	1
SET/IT/BT/C607	Computer Graphics Lab	-	-	1	30	-	30	70	100	1
SET/IT/BT/C608	Cryptography and Network Security Lab	-	-	1	30	-	30	70	100	1
SET/IT/BT/S609	Mini Project – 2	-	-	2	30	-	30	70	100	2
Total		15	5	5			270	630	900	20

SEMESTER VI

	COMPILER CONSTRUCTION (SET/IT/BT/C601)			
Module Name	Content	No. of Hrs.		
Fundamental Concept	Introduction to Compiler, Phases and passes, Bootstrapping, Finite state machines and regular expressions and their applications to lexical analysis, Implementation of lexical analyzers, lexical-analyzer generator, LEX-compiler, Formal grammars and their application to syntax analysis, BNF notation, ambiguity, YACC.	10		
Syntactic specification of programming languages	Context free grammars, derivation and parse trees, capabilities of CFG. Basic Parsing Techniques, Parsers, Shift reduce parsing, operator precedence parsing, top down parsing, predictive parsers Automatic Construction of efficient Parsers: LR parsers, the canonical Collection of LR(0) items, constructing SLR parsing tables, constructing Canonical LR parsing tables, Constructing LALR parsing tables, using ambiguous grammars, an automatic parser generator, implementation of LR parsing tables, constructing LALR sets of items.	12		
Syntax-directed Translation	Syntax-directed Translation schemes, Implementation of Syntax- directed Translators, Intermediate code, postfix notation, Parse trees & syntax trees, three address code, quadruple & triples, translation of assignment statements, Boolean expressions, statements that alter the flow of control, postfix translation, translation with a top down parser. More about translation: Array references in arithmetic expressions, procedures call, declarations, case statements.	10		
Symbol Tables	Data structure for symbols tables, representing scope information. Run-Time Administration: Implementation of simple stack allocation scheme, storage allocation in block structured language. Error Detection & Recovery: Lexical Phase errors, syntactic phase errors semantic errors. Introduction to code optimization: Loop optimization, the DAG representation of basic blocks, value numbers and algebraic laws, Global Data-Flow analysis.	10		
	Total No. of Hours	42		
Textbooks	1. Aho, Sethi & Ullman, "Compiler Design", Addision Wesley.			

COMPUTER GRAPHICS (SET/IT/BT/C602)					
Module Name	Content	No. of Hrs.			
Graphics Primitives	Display devices, Primitive devices, Display File Structure, Display control text.	4			
Line generation,	Points lines, Planes, Pixels and Frame buffers, vector and character generation. Polygon	12			
Polygon,	Representation, Entering polygons, Filling polygons.				
Segments	Segments table, creating deleting and renaming segments, visibility, image transformations.				
Transformations,	Matrices transformation, transformation routines, displays procedure.	12			
Windowing and	Viewing transformation and clipping, generalize clipping, multiple windowing. Three Dimension:				
Clipping	3-D geometry primitives, transformations, projection clipping.				
Interaction	Hardware input devices handling algorithms, Event handling echoing, Interactive techniques.	6			
Hidden Line and	Back face removal algorithms, hidden line methods.	4			
Surface					
Rendering and	Introduction to curve generation, Bezier, Hermite and Bspline algorithms and their comparisons.	4			
Illumination					
	Total No. of Hours	42			
Textbooks	1. Rogers, "Procedural Elements of Computer Graphics", McGraw Hill				
	2. Asthana, Sinha, "Computer Graphics", Addison Wesley Newman and Sproul, "Principle of Interactive Computer				
	Graphics", McGraw Hill.				
References	3. Steven Harrington, "Computer Graphics", A Programming Approach, 2nd Edition				
	4. Rogar and Adams, "Mathematical Elements of Computer Graphics", McGraw Hill.				

CRYPTOGRAPHY AND NETWORK SECURITY (SET/IT/BT/C603)					
Module Nam	e Content	No. of Hrs.			
Module 1	Security attacks, Services and Mechanism, Conventional encryption model, classical encryption	10			
	techniques substitution ciphers and transposition ciphers, cryptanalysis, stereography, stream and				
	block ciphers.				
	Modern Block Ciphers: Block ciphers principals, Shannon's theory of confusion and diffusion, fiestal				
	structure, data encryption standard (DES), strength of DES, differential and linear crypt analysis of				
	DES, block cipher modes of operations, triple DES, IDEA encryption and decryption, strength of				
	IDEA, confidentiality using conventional encryption, traffic confidentiality, key distribution, random				
	number generation.				
Module 2	Introduction to graph, ring and field, prime and relative prime numbers, modular arithmetic, Fermat's	8			
	and Euler's theorem, primality testing, Euclid's Algorithm, Chinese Remainder theorem, discrete				
	logarithms. Principals of public key crypto systems, RSA algorithm, security of RSA, key				
	management, Diffle-Hellman key exchange algorithm, introductory				
M 1 1 2	idea of Elliptic curve cryptography, Elganel encryption.	0			
Module 3	Message Authentication and Hash Function: Authentication requirements, authentication functions,	8			
	message autoentication code, nash functions, birrinday attacks, security of nash functions and MACS,				
	authentication protocols, digital signature standards (DSS), proof of digital signature algorithm				
Modulo 4	autienteation protocos, digital signature statuarus (DSS), proor or ugital signature algoritum.	0			
Module 4	security-pretty good privacy (PGP), S/MIME.	0			
Module 5	IP Security: Architecture, Authentication header, Encapsulating security payloads, combining	8			
	security associations, key management.				
	Web Security: Secure socket layer and transport layer security, secure electronic transaction (SET).				
	System Security: Intruders, Viruses and related threads, firewall design principals, trusted systems.				
	Total No. of Hours	42			
Textbooks	1. William Stallings, "Cryptography and Network Security: Principals and Practice", Prentice				
	Hall, New Jersy.				
References	1. Johannes A. Buchmann, "Introduction to Cryptography", Springer-Verlag.				
	2. B. Forouzan, "Cryptography and Network Security, TMH				

	GRAPH THEORY (SET/IT/BT/C604)				
Module Name	Content	No. of Hrs.			
Module 1	<u>Graphs:</u> Sub Graphs, Basic Properties, Example of Graphs & Their Sub Graphs, Walks, Path & Circuits, Connected Graphs, Disconnected Graphs and Components, Euler Graphs, Various Operation on Graphs, Hamiltonian Paths and Circuits, The Traveling Salesman problem, <u>Trees and Fundamental Circuits</u> : Basic Properties of Tree, Distance and Centers, Radius and Diameters, Pendent Vertices, Rooted and Binary Trees, On Counting Trees, Spanning Trees, Fundamental Circuits, Finding Spanning Trees of a Graph and a Weighted Graph: Prim's Algorithm, Kruskal's Algorithm.	12			
Module 2	<u>Cuts-sets and Cut Vertices:</u> Cut-sets, Properties of Cut-sets, Fundamental Circuits and Cut-sets, Connectivity and Separability, Network Flows, <u>Planer and Dual Graphs:</u> Combinatorial and Geometric Dual, Kuratowski to graphs detection of planarity, geometric dual, some more criterion of planarity, thickness and crossings.	10			
Module 3	<u>Vector Space of a Graph and Vectors:</u> Basis Vector, Cut-set Vector, Circuit Vector, Circuit and Cut- set verses Subspaces, Orthogonal Vectors and Subspaces, <u>Matrix Representation of Graphs:</u> Incidence Matrix of Graph, Sub Matrices of A(G), Circuit Matrix, Cut-set Matrix, Path Matrix and Relationships among Af, Bf, and Cf, Fundamental Circuit Matrix and Rank of B, Adjacency Matrices, Rank-Nullity Theorem	8			
Module 4	<u>Coloring, Covering and Partitioning:</u> Chromatic Number, Chromatic Partitioning, Chromatic Polynomials, Matching, Covering, Four Color Problem, Directed Graphs, Some Type of Directed Graphs, Directed Paths, and Connectedness, Euler Digraphs, Trees with Directed Edges, Fundamental Circuits in Digraph, Matrices A, B and C of Digraphs Adjacency Matrix of a Digraph,	8			
Module 5	Enumeration: Types of Enumeration, Counting of Labeled and Unlabeled Trees, Polya's Counting Theorem, Graph Enumeration with Polya's Theorem. Graph Theoretic Algorithms	6			
	Total No. of Hours	44			
Textbooks	1. Deo, N, "Graph Theory", PHI				
References	1. Harary, F, "Graph Theory", Narosa				
	2. Bondy and Muriny, "Graph Theory and Application", Addison Wesley.				

	E-COMMERCE (SET/IT/BT/C605)					
Module Name	Content	No. of Hrs.				
Technology and Prospects	Economic potential of electronic commerce, Incentives for engaging in electronic commerce, forces behind E-Commerce, Advantages and Disadvantages, Architectural framework, Impact of E-Commerce on business.	8				
Network Infrastructure of E-Commerce	Internet and Intranet based E-Commerce Issues, problems and prospects, Network Infrastructure, Network Access Equipments, Broadband telecommunication (ATM, ISDN, and FRAME RELAY). Mobile Commerce: Introduction, Wireless Application Protocol, WAP Technology, Mobile Information device, Mobile Computing Applications.	10				
Web Security	Security Issues on web, Importance of Firewall, components of Firewall, Transaction security, Emerging client server, Security Threats, Network Security, Factors to consider in Firewall design, Limitation of Firewalls.	8				
Encryption	Encryption techniques, Symmetric Encryption-Keys and data encryption standard, Triple encryption. Asymmetric encryption-Secret key encryption, public and private pair key encryption, Digital Signature, Virtual Private Network.	8				
Electronic Payments	Overview, The SET protocol, payment Gateway, certificate, digital Tokens, Smart card, credit card, magnetic strip card, E-Checks, Credit/Debit card based EPS, online Banking EDI Application in business	8				
	Total No. of Hours	42				
Textbooks	1. Ritendra Goel, "E-Commerce", New Age International Publishers					
References	 Ravi Kalakota, Andrew Winston, "Frontiers of Electronic Commerce", Addison Wesley. Bajaj and Nag. "E-Commerce the cutting edge of Business". TMH. P. Loshin, John Vacca, "Electronic Commerce" Firewall Media, N.Delhi. Brahm Cazner, "E Business & Commerce", Wiley dreamtech. 					

COMPILER CONSTRUCTION LAB (SET/IT/BT/C606)					
Module Name		Content	No. of Hrs.		
Syntactic	1.	Program to check a string under a given grammar.	6x2		
specification of	2.	Program to check for keywords in a given string.			
programming	3.	Program to check for identification for a given string.			
languages	4.	Program to check for constant in a given string.			
	5.	Program to check for relation all operators in a given string.			
	6.	Program for lexical analyzer.			
	7.	Implementation of stack using C.			
Syntax-	1.	Implementation of shift – reduce parsing using C.	6x2		
directed	2.	Implementation of three address code using quadruples.			
Translation					
		Total No. of Hours	24		

	COMDUTED CDADHICS LAD (SET/IT/DT/C607)	
	COMPUTER GRAPHICS LAB (SE1/11/B1/C007)	
Module Name	Content	No. of Hrs.
Drawing	1. Implementation of line generation using slope's method, DDA and Bresenham algorithms.	12x2
Algorithm	2. Implementation of circle generation using Mid-point method and Bresenham algorithm	
	3. Implementation of ellipse generation using Mid-point method.	
Polygon	4. Implementation of polygon filling using Flood-fill, Boundary-fill and Scan-line algorithms.	
Filling		
2D and 3D	5. Translation, Scaling, Rotation, Mirror Reflection and Shearing.	
transformatio	6. 3D Translation, Scaling and rotation.	
n	-	
Windowing	7. Implementation of Line Clipping using Cohen-Sutherland algorithm and Bisection Method.	
and Clipping	8. Implementation of Polygon Clipping using Sutherland-Hodgman algorithm.	
Rendering and	9. Implementation of Curve generation using Interpolation methods, B-spline and Bezier	
Illumination	curves.	
Hidden Line	10. Implementation of any one of Back face removal algorithms such as Depth-Buffer algorithm.	
and Surface	Painter's algorithm, Warnock's algorithm, Scan-line algorithm.	

	Tota	al No. of Hours	24
	CRYPTOGRAPHY AND NETWORK SECURITY LAB (SE	ET/IT/C608)	
Module Name	Content		No. of Hrs.
Module 1	 Conventional encryption. Classical encryption techniques. Graph, ring and field, prime and relative prime numbers Fermat's and Euler's theorem. Euclid's Algorithm. Chinese Remainder theorem . RSA algorithm Diffle-Hellman key exchange algorithm. Hash Function . MD5 message digest algorithm . Secure hash algorithm (SHA). Digital signature standards (DSS) 		12x2
	Tota	al No. of Hours	24

MINI PROJECT – 2(SET/IT/BT/S609)				
Module Name	Content	No. of Hrs.		
Module 1	Mini Project-2 shall be based on Database/Computer Networking.	24x2		
	Total No. of Hours	48		

SEMESTER VII

	L	Т	Р	T.A	C.T.	TOT	ESE.	SUB.	Credit	
Code	Course								TOTAL	
SET/IT/BT/C701	Unix and Shell Programming	3	1	-	10	20	30	70	100	3
SET/IT/BT/C702	Artificial Intelligence	3	1	-	10	20	30	70	100	3
SET/IT/BT/C703	Software Project Management	3	1	-	10	20	30	70	100	3
	Elective I	3	1	-	10	20	30	70	100	3
	Elective II	3	1	-	10	20	30	70	100	2
SET/IT/BT/C706	Unix and Shell Programming Lab	-	-	1	30	-	30	70	100	1
SET/IT/BT/C707	Artificial Intelligence Lab	-	-	1	30	-	30	70	100	1
SET/IT/BT/C708	Project Work – I	-	-	2	30	-	30	70	100	2
SET/IT/BT/S709	Industrial Training Seminar	-	-	1	30	-	30	70	100	1
Total	tal			5			270	630	900	20

Elective I	S. No.	Code	Course Title
	1	SET/IT/BT/E721	Advanced Information System Engineering
LICCUVE I	2	SET/IT/BT/E722	Object Oriented Modeling and Design
	3	SET/IT/BT/E723	Advance Database Management System

Elective II	S. No.	Code	Course Title
	1	SET/IT/BT/E731	Distributed Systems
	2	SET/IT/BT/E732	Neural Networks
	3	SET/IT/BT/E733	Digital Image Processing

Module	Contents	No. of
Name		Hrs.
Module 1	Introduction To Unix, Brief History, What Is Unix, Unix Components, Using Unix, Commands	8
	In Unix, Some Basic Commands, Command Substitution, Giving Multiple Commands.	
	The File System – The Basics Of Files, What's In A File, Directories And File Names,	
	Permissions, I Nodes, The Directory Hierarchy, File Attributes And Permissions, The File	
	Command Knowing The File Type, The Chmod Command Changing File Permissions, The	
	Chown Command Changing The Owner Of A File, The Chgrp Command Changing The Group	
	Of A File.	
Module 2	Using The Shell, Command Line Structure, Met Characters, Creating New Commands,	8
	Command Arguments And Parameters, Program Output As Arguments, Shell Variables, , More	
	On I/O Redirection, Looping In Shell Programs.	
Module 3	Filters, The Grep Family, Other Filters, The Stream Editor Sed, The AWK Pattern Scanning	10
	And Processing Language, Good Files And Good Filters.	
Module 4	Shell Programming, Shell Variables, The Export Command, The Profile File A Script Run	10
	During Starting, The First Shell Script, The Read Command, Positional Parameters, The \$?	
	Variable, Knowing The Exit Status, More About The Set Command, The Exit Command,	
	Branching Control Structures, Loop Control Structures, The Continue And Break Statement,	
	The Expr Command: Performing Integer Arithmetic, Real Arithmetic In Shell Programs, The	
	Here Document (<<), The Sleep Command, Debugging Scripts, The Script Command, The Eval	
	Command, The Exec Command.	
Module 5	The Process, The Meaning, Parent And Child Processes, Types Of Processes, More About	6
	Foreground And Background Processes, Internal And External Commands, Process Creation,	
	The Trap Command, The Stty Command, The Kill Command, Job Control.	
	Total No. of Hours	42
Text Books	1. Sumitabha Das, "Your Unix – The Ultimate Guide", TMH, 2000.	
References	1. John Goerzen, "Linux Programming Bible", IDG Books, New Delhi, 2000.	
	2. Mathew, "Professional Linux Programming", Vol.1 & 2, Wrox, Shroff, 2001.	
	3. Welsh & Kaufmann "Running Linux", O'Reiley & Associates, 2000.	

ARTIFICIAL INTEELLIGENCE (SET/IT/BT/C702)				
Module Name	Content	No. of Hrs.		
Problem Solving Methods	Production systems ,State space search , Control strategies , Heuristic search, Forward and backward reasoning, Hill Climbing techniques, Breadth first search, Depth first search, Best search , Staged search., Predicate logic, Resolution question answering, Nonmonotic reasoning, Stastical and probalistic reasoning,	12		
Knowledge Representati on	Predicate logic, Resolution question answering, Nonmonotic reasoning, Stastical and probalistic reasoning, Fuzzy logic, Semantic Nets, Conceptual dependency, Frames, Scripts.	10		
AI Application	Neural Networks, Natural language understanding, speech recognition and understanding, Learning, perception, AI robotics, satellite imaging and medical diagnosis.	10		
Expert Systems	Structure of an expert system, interaction with an expert, Design of an expert system.	10		
	Total No. of Hours	42		
Textbooks References	 E. Rich & K. Knight, "Artificial Intelligence" N. J. Nilsson, "Principles of Artificial Intelligence" A. Barr, E. A. Fergenbaumand & P. R. Cohen, "Artificial Intelligence" 4 D. A. Waterman "A Guide to Expert System" 			

	SOFTWARE PROJECT MANAGEMENT (SET/IT/BT/C703)	
Module Name	Content	No. of
		Hrs.
Software	Fundamentals of Software Project Management (SPM), Need Identification, Vision and Scope document,	10
Project	Project Management Cycle, SPM Objectives, Management Spectrum, SPM Framework, Software Project	
Planning	Planning, Planning Objectives, Project Plan, Types of project plan, Structure of a Software Project	
	Management Plan, Software project estimation, Estimation methods, Estimation models, Decision process.	
Project	Project Elements, Work Breakdown Structure (WBS), Types of WBS, Functions, Activities and Tasks,	8
Organization	Project Life Cycle and Product Life Cycle, Ways to Organize Personnel, Project schedule, Scheduling	
	Objectives, Building the project schedule, Scheduling terminology and techniques. Network Diagrams,	
	PERT, CPM, Bar Charts: Milestone Charts, Gantt Charts.	
Project	Dimensions of Project Monitoring & Control, Earned Value Analysis, Earned Value Indicators: Budgeted	8
Monitoring	Cost for Work Scheduled, Cost Variance, Schedule Variance, Cost Performance Index, Schedule	
and Control	Performance Index, Interpretation of Earned Value Indicators, Error Tracking, Software Reviews.	
Software	Testing Objectives, Testing Principles, Test Plans, Test Cases, Types of Testing, Levels of Testing, Test	8
Quality	Strategies, Program Correctness, Program Verification & validation, Testing Automation & Testing Tools,	
Assurance and	Concept of Software Quality, Software Quality Attributes, Software Quality Metrics and Indicators, The	
Testing	SEI Capability Maturity Model CMM), SQA Activities, Statistical quality assurance, Clean room process.	
Software	Software Configuration Items and tasks, Baselines, Plan for Change, Change Control, Change Requests	8
Configuration	Management, Version Control, Risk Management: Risks and risk types, Risk Breakdown Structure (RBS),	
Management	Risk Management, Risk identification, Risk analysis, Risk planning, Risk monitoring, Cost Benefit	
	Analysis.	
	Total No. of Hours	42
Text books	1. M. Cotterell, "Software Project Management", TMH	
References	1. S. A. Kelkar, "Software Project Management", PHI	
	2. Royce, "Software Project Management", Pearson Education	
	3 Kieron Conway, "Software Project Management", Dreamtech Press	

DETAILED SYLLABI FOR ELECTIVES

	ADVANCED INFORMATION SYSTEM ENGINEERING (SET/IT/BT/E721)				
Module Name	Content	No. of Hrs.			
Module 1	Modeling of Secure Information System, Tropos Methodology, Development Process, Introduction to Internet Based Information System (IBIS), Semantic data integration, Framework for data integration, Query processing, Architecture of IBIS, Data extraction, Interaction with the user Situation Method Engineering (SME) Generic process model for SME, Assembly based method engineering, paradigm-based method engineering.	14			
Module 2	Advanced design of Information System, Web based federated Information system Designing, Hera Methodology, Role of RDF, RDFS, RQL in Hera, Hera front-end Embedding metrics into IS development Meta modeling technique and MEL, method assembly for measurable methods, defining metrics with MEL Methodologies for IS development Method components, application of the method component, introduction to change centric method engineering, typology of method engineering approaches, Generic operations for method engineering, introduction to two-Hemispehere model driven approach, software development driven by particular model.	14			
Module 3	Requirements on Modelling technique Communication driven knowledge transformation, Conceptual framework, Guidelines for the usage of modeling techniques, concern oriented RE model, COM for RE, Realization of the model. Enterprise Modelling Business Process Modelling Process model frameworks, validitiy of process models, supply chain operations reference model (SCOR) Dataware House Methodology Approaches to DW development methods, IPD approach, organizational process modeling.	14			
	Total No. of Hours	42			
Textbooks	1. Oscar Pastor, Joao Falcaoe Cunha, "Advanced Information System Engineering", Springer				
References	1. Ivar Jacobson, Martin Griss, Patrik Jonsson, "Software Reuse", Pearson Education.				

	OBJECT ORIENTED MODELLING AND DESIGN (SET/IT/BT/E722)	
Module Name	Content	No. of Hrs.
Object Oriented Methodologies	The Rumbaugh OMT, The booch methodology, Jacobson's OOSE methodologies, Unified process, Introduction to UML, Important views and diagram to be modelled for system by UML.	5
Functional view	Use case diagram, Requirement capture with use case, Building blocks of use case diagram actors, use case guidelines for use case models, Relationships between use cases extend, include, generalize. Activity diagram, Elements of activity diagram action state, activity state, object node, control and overflow, transition, Guidelines for creating activity diagrams, Activity diagram – action decomposition, Partition – swim lane.	15
Structural View	Classes, values and attributes, operations and methods, responsibilities for classes, abstract classes, access specification (visibility of attributes and operations) Relational among classes: Associations, Dependencies, Inheritance, Generalizations, aggregation Adornments on association: association names, association classes, qualified association, n-ary associations, ternary and reflexive association Dependency relationships among classes, notations Notes in class diagram, extension mechanisms, metadata, refinements, derived, data, constraint, stereotypes, package & interface notation. Object diagram notations and modelling, relations among objects (links).	10
Dynamic view	State diagram, State diagram notations, events (signal events, change events, time events), State diagram states (composite states, parallel states, history states) transition and condition, state diagram behaviour(activity effect, do-activity, entry and exit activity), completion transition, sending signals Interaction diagrams Sequence diagram – Sequence diagram notations and examples, iterations, conditional messaging, branching, object creation and destruction, time constraints, origin of links, activations diagram – Collaboration diagram notations and examples, iterational messaging, branching, object creation and destruction, structure, origin of links, activations diagram – Collaboration diagram notations and examples, iterations in collaboration diagram.	12
Textbooks	1. James Rumbaugh, "Object Oriented Modeling and Design",	
References	 Object oriented analysis and design, Satzinger, Jackson, Burd, Thomson Object oriented modeling and design with UML – James Rumbaugh, Michael Blaha (2nd edition) The unified modeling language user guide – Grady Booch, James Rumbaugh, Ivar Jacobson Teach yourself UML in 24 hours – Joseph Rumbaugh Object oriented analysis and design: using UML Mike O'Docherty Wiley publication 	

6. Designing flexible object oriented systems with UML – Charles Ritcher

	ADVANCED DATABASE MANAGEMENT SYSTEM (SET/IT/BT/E723)				
Module Name	Content	No. of Hrs.			
Module 1	Review of DBMS concepts; Relational Database Systems, Applications of DBMS.	10			
	Transactions & Serializability: Concurrent Executions, Serializability View and Conflict				
	Serializability, Recoverability,				
Module 2	Concurrency Control: Lock based protocols, timestamp based protocols, validation based protocols,	6			
	deadlock handling, insert and delete operations				
Module 3	Recovery System: Failure classification, recovery and atomicity, log based recovery, shadow paging,	6			
	buffer management, remote backup systems				
Module 4	Distributed Databases: Homogeneous and heterogeneous databases, distributed transactions, commit 8				
	protocols, concurrency control in distributed databases				
Module 5	Advanced Data Types: Time in databases, spatial and geographic databases, multimedia databases, 12				
	Advanced applications : Knowledge discovery and data mining, data mining functionalities,				
	classification of data mining systems, data warehousing concepts, slicing, dicing, schemas, data				
	warehouse architecture, introduction to Data Mining Query Language (DMQL)				
	Total No. of Hours 42				
Textbooks	1. Silberchatz, A., Korth, H. F. and Sudarshan, S., "Database System Concepts", 6th Ed., Tata-McGraw Hill.				
	2. Han, J. and Kamber, M., "Data Mining: Concepts and Techniques", 2nd Ed., Morgan Kaufmann.				
	3. Ray Chhanda, "Distributed Database Systems", Pearson.				
References	1. Date, C. J, "An Introduction to Database Systems", 8th Ed., Pearson.				

	DISTRIBUTED SYSTEMS (SET/IT/BT/E731)	
Module Name	Content	No. of Hrs.
System Models	Architectural Models, Fundamental Models, Theoretical Foundation for Distributed System, Limitation of Distributed system, Absence of global clock, Shared memory, Logical clocks, Lamport's & vectors logical clocks, Causal ordering of messages, Global state, Termination detection. Resource sharing and the Web Challenges. Distributed Objects and Remote Invocation, Communication between distributed objects, Remote procedure call. Distributed File Systems, architecture, Sun Network File System, The Andrew File System.	10
Distributed Mutual Exclusion and Deadlock	Classification of distributed mutual exclusion, Requirement of mutual exclusion theorem, Token based and non token based algorithms, Performance metric for distributed mutual exclusion algorithms. Resource vs. Communication deadlocks, Deadlock prevention, Avoidance, detection & resolution, Centralized dead lock detection, Distributed dead lock detection, Path pushing algorithms, edge chasing algorithms.	8
Agreement Protocols	Classification of Agreement Problem, Byzantine agreement problem, Consensus problem, Interactive consistency Problem, Solution to Byzantine Agreement problem, Application of Agreement problem.	8
Distributed Transactions	Nested transactions, Locks, Optimistic Concurrency control, Timestamp ordering, Comparison of methods for concurrency control, Flat and nested distributed transactions, Atomic Commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery. Replication, Fault - tolerant services, highly available services, Transactions with replicated data.	10
Distributed Algorithms	Communication protocols, Balanced sliding window protocol, Routing algorithms, Destination based routing, Deadlock free Packet switching, Wave & traversal algorithms, Election algorithm.	6
	Total No. of Hours	42
Text Books	1. Singhal & Shivaratri, "Advanced Concept in Operating Systems", McGraw Hill.	
References	 Coulouris, Dollimore, Kindberg, "Distributed System: Concepts and Design", Pearson Ed. Gerald Tel, "Distributed Algorithms", Cambridge University Press. 	

	NEURAL NETWORKS (SET/IT/BT/E732)		
Module Name	Content	No. of Hrs.	
Module 1	Introduction to Neural Networks, Working of a Biological and an Artificial Neuron, Neural Network Architectures, Single and Multi-layer Neural Networks, Perceptron, Linear Seperability, Perceptron Training Algorithm, Backpropagation Algorithm.	10	
Module 2	Adalines, Madalines, Adaptive Multi-layer Networks, Prediction Networks, Radial Basis Functions, Polynomial Networks and Regularization.	8	
Module 3	Difference Between Supervised and Unsupervised Learning, Winner Takes all Networks, Counter- Propagation Networks, Adoptive Resonance Theory, Neocognitron, Hopfield Networks, Bolzmann's Training.	8	
Module 4	Various Types of Optimization Methods like Gradient Descent, Simulated Annealing etc, Bi-directional Associative Memory Networks.	8	
Module 5	Introduction to Fuzzy Logic, Neuro-Fuzzy Systems, Applications of Neural Networks.	8	
	Total No. of Hours	42	
Text Books	1. Kishan Mehrotra, Chilukuri K. Mohan and Sanjay Ranka, "Elements of Artificial Neural Networks"		
References	1. Bart Kosko, "Neural Networks and Fuzzy Systems", Prentice Hall of India.		
	2. Mohammad H. Hassoun, "Fundamentals of Artificial Neural Networks", Prentice Hall of India.		

DIGITAL IMAGE PROCESSING (SET/IT/BT/E733)				
Module Name	Content	No. of Hrs.		
Introduction and Fundamentals	Introduction to Image Processing, Digital Images- The Eye, Brightness, Image Sampling, Neighbors of Pixels, Distance. Multiview Geometry- Stereo Vision, The correspondence problem; Algorithms for Stereo Matching,	10		
Image Enhancement	Spatial Image Enhancements- Transformations: Negative, Log, Power, Histogram, Subtraction, Averaging, Smoothing, Laplacian. Frequency Domain Image Enhancements 1D FT(Fourier Transform), Inverse, 2D FT, Filtering, Lowpass, Highpass, Unsharp, High-Boost, Use of FT, Fast FT	8		
Image Restoration	Noise, Mean filter, Median, Min, Max, Midpoint, Adaptive filters, Frequency Domain, etc	4		
Color Image Processing	Color Fundamentals, Color Models, Converting Colors to Different Models, Color Transformation, Smoothing and Sharpening, Color Segmentation.	4		
Applications of Wavelets	Multi Resolution Expansions, Wavelet Transform in One Dimension, The Fast Wavelet Transform, Wavelet Transform in Two Dimensions	4		
Morphological Image Processing	Erosion and Dilation, Opening and Closing, The Hit or Miss Transformations, Some Basic Morphological algorithms	4		
Image Compression	Need for Data Compression, Huffman Coding, Golomb coding, Arithmetic coding, LZW coding, Run Length coding, Bit plane coding and Wavelet coding	4		
Image Segmentation	Edge Detection, Thresholding, Region based Segmentation, Segmentation using Morphological Watersheds and the use of motion in Segmentation.	4		
	Total No of Hours	42		
Text Books	1. Rafael C. Gonzalvez and Richard E. Woods, "Digital Image Processing", 2 nd Edition, Pearson Ed	ucation.		
References	 R.J. Schalkoff. "Digital Image Processing and Computer Vision", Wiley A.K. Jain, "Fundamentals of Digital Image Processing", Prentice Hall D. A. Forsyth, J. Ponce, "Computer Vision: A Modern Approach", Prentice Hall. 			

UNIX AND SHELL PROGRAMMING (SET/IT/BT/C706)						
Module Name	Iodule Name Content No. of Hrs.					
	Related Experiments.	12x2				
	Total No. of Hours	24				

ARTIFICIAL INTELLIGENCE LAB (SET/IT/BT/C707)						
Module Name	Module Name Content No. of Hrs.					
	Related Experiments.	12x2				
	Total No. of Hours	24				

PROJECT WORK - I (SET/IT/BT/C708)				
Module Name	Content	No. of Hrs.		
Module 1	It includes following assignments.	12x2		
	Survey and study of published literature on the assigned topic.			
	• Working out a preliminary approach to the Problem relating to the assigned topic.			
	Conducting Preliminary Analysis/ Modeling/ Experiment/ Simulation/ Experiment/ Design/ Feasibility.			
	• Preparing a Written Report on the Study conducted for presentation to the Department.			
	• Final Seminar, as oral Presentation before a Departmental Committee.			
	Total No. of Hours	24		

INDUSTRIAL TRAINING SEMINAR (SET/IT/BT/S709)				
Module Name	Content	No. of Hrs.		
-	Student shall prepare a detailed report on her/his industrial training and deliver a seminar of	12x2		
	30 minutes.			
	Total No. of Hours	24		

SEMESTER VIII

Course			Т	Р	T.A	C.T.	CIE.	ESE	SUB.	Credit
Code	Course								TOTAL	
SET/IT/BT/C801	ERP Systems	3	1	0	10	20	30	70	100	3
SET/IT/BT/C802	Data Mining Data Warehousing	3	1	0	10	20	30	70	100	3
	Elective III	3	1	0	10	20	30	70	100	3
	Elective IV	3	1	0	10	20	30	70	100	3
SET/IT/BT/C806	Project and Dissertation	-	-	6	30	-	30	70	100	
Total			4	6			150	350	500	18

	S. No.	Code	Course Title
	1	SET/IT/BT/E821	Cloud Computing
Elective III	2	SET/IT/BT/E822	Mobile Computing
	3	SET/IT/BT/E823	Bioinformatics
	4	SET/IT/BT/E824	.NET Technology

Elective IV	S. No.	Code	Course Title
	1	SET/IT/BT/E831	Real Time Systems
	2	SET/IT/BT/E832	Natural Language Processing
	3	SET/IT/BT/E833	Pattern Recognition
	4	SET/IT/BT/E834	E-Business

	ERP SYSTEM (SET/IT/BT/C801)				
Module Name	Content	No. of Hrs.			
Module 1	ERP Introduction, Benefits, Origin, Evolution and Structure: Conceptual Model of ERP, The Evolution of ERP, The Structure of ERP.	6			
Module 2	Business Process Reengineering, Data ware Housing, Data Mining, Online Analytic Processing(OLAP), Product Life Cycle Management(PLM),LAP, Supply Chain Management.	8			
Module 3	ERP Marketplace and Marketplace Dynamics: Market Overview, Marketplace Dynamics, The Changing ERP Market. ERP- Functional Modules: Introduction, Functional Modules of ERP Software, Integration of ERP, Supply chain and Customer Relationship Applications.	10			
Module 4	ERP Implementation Basics, ERP Implementation Life Cycle, Role of SDLC/SSAD, Object Oriented 8 Architecture, Consultants, Vendors and Employees. 8				
Module 5	ERP & E-Commerce, Future Directives- in ERP, ERP and Internet, Critical Success and Failure factors, Integrating ERP into Organizational Culture. Using ERP Tool: Either SAP or ORACLE format to case study				
	Total No. of Hours	42			
Text Book	1. Alexis Leon, "ERP Demystified", Tata McGraw Hill				
References	 Rahul V. Altekar "Enterprisewide Resource Planning", Tata McGraw Hill, Vinod Kumar Garg and Venkitakrishnan N K, "Enterprise Resource Planning – Concepts and I Joseph A Brady, Ellen F Monk, Bret Wagner, "Concepts in Enterprise Resource Plannin Course Technology 4. Mary Summer, "Enterprise Resource Planning"- Pearson Education Thomas F. Wallace, Michael H. Kremzar, "ERP: Making It Happen: The Implementers' Gu with Enterprise", NetLibrary, Inc Erin Callaway, "Enterprise Resource Planning: Integrating Applications and Business", 	Practice", PHI ng", Thompson uide to Success			

	DATA MINING AND DATA WAREHOUSING (SET/IT/BT/C802)		
Module Name	Content	No. of Hrs.	
Module 1	Introduction to Data Mining:- Kinds of Data, Relational Databases, Traditional Databases, Advanced Database Systems. Data Mining Functionalities and Patterns Generated. Data Warehouse and Operational Databases, Multidimensional Data Model. Data Warehouse Architecture:- Process Flow, Extract & Load Process, Clean & Transform Data. Backup and Archive Process Load and Warehouse	8	
Module 2	Data Warehouse Design:- Identifying Facts & Dimensions. Designing:- Fact Tables, Dimension Tables, Star Flake Schema Query Redirection. Multidimensional Schemes:- Partitioning Strategy, Aggregation, Data Marting, Metadata. Capacity Planning, Tuning the Data Warehouse. Testing the Data Warehouse: Developing Test Plan, Testing Operational Environment, Database, Application.	8	
Module 3	Data Preprocessing, Data Cleaning, Data Integration & Transformation, Data Reduction. Data Mining Primitives, Languages & Systems, Architecture of Data Mining Systems.	8	
Module 4	Concept Description, Characterization & Comparison. Mining and Association Rules in Large Databases, Mining Single Dimension and Multilevel Association Rules for Transactional Databases, Relational Databases and Data Warehouses.	10	
Module 5	Issues Regarding Classification & Prediction, Methods of Classification & Prediction. Cluster Analysis:- Types of Data in Cluster Analysis, Clustering Methods. Multidimensional Analysis & Descriptive Mining of Complex Objects. Mining Spatial Databases, Multidimensional Databases, Text Databases and World Wide Web.	8	
	Total No. of Hours	42	
Text Book	 Jiawei Han and Micheline Kamber, "Data Mining Concepts and technique", Elsevier Sam Anahory and Dennis Murray, "Data Warehousing in the Real World", Pearson Education 	1	
References	 M. H. Dunham, "Data Mining:Introductory and Advanced Topics", Pearson Education Mallach, "Data Warehousing System", McGraw –Hill 		

DETAILED SYLLABI FOR ELECTIVES

	CLOUD COMPUTING (SET/IT/BT/E821)		
Module Name	Content	No. of Hrs.	
Module 1	Introduction: Distributed Computing and Enabling Technologies, Cloud Fundamentals: Cloud Definition, Evolution, Architecture, Applications, deployment models, and service models. Virtualization: Issues with virtualization, virtualization technologies and architectures, Internals of virtual machine monitors/hypervisors, virtualization of data centers, and Issues with Multi-tenancy.	8	
Module 2	Implementation: Study of Cloud Computing Systems like Amazon EC2 and S3, Google App Engine, and Microsoft Azure, Build Private/Hybrid Cloud using open source tools, Deployment of Web Services from Inside and Outside a Cloud Architecture. MapReduce and its extensions to Cloud Computing, HDFS, and GFS. Interoperability and Service Monitoring: Issues with interoperability, Vendor lock-in, Interoperability approaches. SLA Management, Metering Issues, and Report generation.	12	
Module 3	Resource Management and Load Balancing: Distributed Management of Virtual Infrastructures, Server consolidation, Dynamic provisioning and resource management, Resource Optimization, Resource dynamic reconfiguration, Scheduling Techniques for Advance Reservation, Capacity Management to meet SLA Requirements, and Load Balancing, various load balancing techniques.	8	
Module 4	Migration and Fault Tolerance: Broad Aspects of Migration into Cloud, Migration of virtual Machines and techniques. Fault Tolerance Mechanisms.	4	
Module 5	Security: Vulnerability Issues and Security Threats, Application-level Security, Data level Security, and Virtual Machine level Security, Infrastructure Security, and Multi-tenancy Issues. IDS: host-based and network-based, Security-as-a-Service. Trust Management, Identity Management, and Access Controls Techniques Advances: Grid of Clouds, Green Cloud, Mobile Cloud Computing	10	
	Total No. of Hours	42	
Text Book	1. Rajkumar Buyya, James Broberg, Andrzej Goscinski, "Cloud Computing Principles and Para Publishers	digms", Wiley	
References	 Barrie Sosinsky, "Cloud Computing Bible", Wiley Publishers Michael Miller, "Cloud Computing : Web-based Applications That Change The Way Y Collaborate Online", Pearson Education Rajkumar Buyya, Christian Vacchiola, S Thamarai Selvi, "Mastering Cloud Computing", McC David S. Linthicum, "Cloud Computing and SOA Convergence in Your Enterprise: A Step-by Tim Mather, Subra Kumaraswamy, Shahed Latif, "Cloud Security and Privacy: An Enterprise Risks and Compliance", O'Reilly Toby Velte, Antohy T Velte, Robert Elsenpeter, "Cloud Computing : A Practical Approach", N 	You Work and Graw Hill -Step Guide", Perspective on AcGraw Hill	

MOBILE COMPUTING (SET/IT/BT/E822)		
Module Name	Content	No. of Hrs.
Cellular Architecture	Introduction, Issues in mobile computing, overview of wireless telephony: cellular concept, GSM, air-interface, channel structure, location management, HLR-VLR, hierarchical, handoffs, channel allocation in cellular systems, CDMA, GPRS.	8
Wireless LAN	Wireless Networking, MAC issues, IEEE 802.11, Blue Tooth, Wireless multiple access protocols, TCP over wireless, Wireless applications, data broadcasting,	8
Mobile IP	WAP, Architecture, protocol stack, application environment, applications. Data management issues, data replication for mobile computers, adaptive clustering for mobile wireless networks, File system, Disconnected operations. Mobile Agents computing, security and fault tolerance, transaction processing in mobile computing environment.	10
Mobile Ad Hoc networks	Localization, MAC issues, Routing protocols, global state routing (GSR), Destination sequenced distance vector routing (DSDV), Dynamic source routing (DSR), Ad Hoc on demand distance vector routing (AODV), Temporary ordered routing algorithm (TORA), QoS in Ad Hoc Networks, applications.	16
	Total No. of Hours	42
Text Books	 J. Schiller, "Mobile Communications", Addison Wesley. Charles Perkins, "Mobile IP", Addison Wesley. Charles Perkins, "Ad hoc Networks", Addison Wesley. 	
References	 A. Mehrotra , "GSM System Engineering". M. V. D. Heijden, M. Taylor, "Understanding WAP", Artech House. Upadhyaya, "Mobile Computing", Springer 	

BIOINFORMATICS (SET/IT/BT/E823)		
Module Name	Content	No. of Hrs.
Module 1	Sequence Comparison and Alignment Methods: Dynamic programming; Global, semi global and local alignment algorithms; Gap model; Database searching tools; Multiple sequence alignment.	6
Module 2	 Suffix tree: Implicit suffix tree; Explicit suffix tree; Suffix link; Ukkonen's algorithm; Applications of Suffix tree. Phylogenetic Tree: Rooted and unrooted tree, Newick format, scaled and unscaled tree, character and distance based methods, distance matrix, UPGMA, WPGMA, additive tree, neighbor joining method, parsimony, maximum likelihood approach, phylogenic comparison, agreement tree. 	12
Module 3	Gene Network Analysis: Bayesian network, Gene network, clustering, classification, DNA array; Gene network reconstruction methods: Boolean, linear, non-linear and machine learning.	8
Module 4	Sequencing Techniques by Hybridization: Microarray, Hamiltonian path, Euler path.	6
Module 5	RNA Structure Prediction: RNA secondary structure, psuedoknot, loops, RNA secondary structure prediction algorithm, RNA structure comparison, inferring RNA structure. Computational aspects of drug designing.	10
	Total No. of Hours	42
Text Books	1. D E Krane & M L Raymer, "Fundamental concepts of Bioinformatics", Perason Education.	
References	 Rastogi, Mendiratta, Rastogi, "Bioinformatics Methods & applications, Genomics, Prote Discovery", PHI Baxevanis, A. D. and Ouellette, B. F. F., "Bioinformatics: A Practical Guide to Analysis Proteins", 2nd Ed., Wiley. Shubha Gopal et.al. "Bioinformatics: with fundamentals of genomics and proteomics", Mc O'Reilly, "Developing Bioinformatics Computer Skills", CBS Forsdyke, "Evolutionary Bioinformatics", Springer 	comics & Drug s of Genes and Graw Hill.

.NET TECHNOLOGY (SET/IT/BT/E824)		
Module Name	Content	No. of Hrs.
Visual Studio	Writing Window Applications, Windows Graphical User Interface, Programming Languages -	8
Environment	Procedural, Event Driven, and Object Oriented, The Object Model, Microsoft's Visual Studio.NET,	
	Writing Visual Basic Projects, Three-Step Process, Visual Basic Application Files. IDE Start Page,	
	New Project Dialog, IDE Main Window, Toolbars, Document Window, Form Designer, Solution	
	Explorer Window, Properties Window, Toolbox, Design Time, Run Time, and Break Time.	
Visual Basic	Workspace Setup, Plan the Project, Define the User Interface, Set Properties, Coding, Testing,	8
	Maintenance, Printing, Finding and Fixing Errors: Syntax Errors, Run-Time Errors, Logic Errors,	
	Project Debugging, Naming Rules and Conventions for Objects. Variables, Constants and	
	calculations, formatting data, Handling Exceptions, Displaying Messages in Message Boxes, Counting	
	and Accumulating sums, Decisions and Conditions, Menus, Sub Procedures, and Functions, Lists,	
	Loops, and Printing, Graphics, Animation.	
.NET	.NET Framework Terminology, CLR, Managed Code, MSIL, JIT, CTS, Assembly, Framework, Class	10
Framework	Library, Garbage Collection, Manifest, GAC, Boxing, Unboxing	
C#	C# Tools, Operands, Datatypes, Classes, Inheritance, Event and Delegates, Multithreading,	12
	Collections, Generics, Reflection, Remoting. ActiveX Data Object: ADO.NET Architecture,	
	Connected Architecture, Disconnected Architecture, Dataset, Data Provider, Data Reader.	
ASP.NET	Server Control, State Management, Master Page, Skin and Theme, Caching, Security, Globalization.	6
	Total No. of Hours	44
Text Books	1NET 4.0 Programming 6-in-1 Black Book, Kogent Learning Solutions	
	2. Bradley J. C., "Programming in Visual Basic", McGrawHill, 2010 Ed.	
References	1. Faraz Rasheed, "Programmers Heaven C# School", E Book, Synchron Data	

REAL TIME SYSTEMS (SET/IT/BT/E831)		
Module Name	Content	No. of Hrs.
Module 1	Introduction: Definition, Typical Real Time Applications: Digital Control, High Level Controls, Signal Processing etc., Release Times, Deadlines, and Timing Constraints, Hard Real Time Systems and Soft Real Time Systems, Reference Models for Real Time Systems: Processors and Resources, Temporal Parameters of Real Time Workload, Periodic Task Model, Precedence Constraints and Data Dependency.	10
Module 2	<u>Real Time Scheduling:</u> Common Approaches to Real Time Scheduling: Clock Driven Approach, Weighted Round Robin Approach, Priority Driven Approach, Dynamic Versus Static Systems, Optimality of Effective-Deadline-First (EDF) and Least-Slack-Time-First (LST) Algorithms, Rate Monotonic Algorithm, Offline Versus Online Scheduling, Scheduling Aperiodic and Sporadic jobs in Priority Driven and Clock Driven Systems.	8
Module 3	<u>Resources Sharing:</u> Effect of Resource Contention and Resource Access Control (RAC), Non- preemptive Critical Sections, Basic Priority-Inheritance and Priority-Ceiling Protocols, Stack Based PriorityCeiling Protocol, Use of Priority-Ceiling Protocol in Dynamic Priority Systems, Preemption Ceiling Protocol, Access Control in Multiple-Unit Resources, Controlling Concurrent Accesses to Data Objects.	8
Module 4	<u>Real Time Communication:</u> Basic Concepts in Real time Communication, Soft and Hard RT Communication systems, Model of Real Time Communication, Priority-Based Service and Weighted Round-Robin Service Disciplines for Switched Networks, Medium Access Control Protocols for Broadcast Networks, Internet and Resource Reservation Protocols	8
Module 5	Real Time Operating Systems and Databases: Features of RTOS, Time Services, UNIX as RTOS, POSIX Issues, Charecteristic of Temporal data, Temporal Consistencey, Concurrency Control, Overview of Commercial Real Time databases	8
	Total No. of Hours	42
Text Books	1. Jane W. S. Liu, "Real Time Systems", Pearson Education Publication.	
References	 Mall Rajib, "Real Time Systems", Pearson Education Albert M. K. Cheng, "Real-Time Systems: Scheduling, Analysis, and Verification", Wiley Krishna, C.M. and Shin, K.G., "Real Time Systems", Tata McGraw Hill, 	

	NATURAL LANGUAGE PROCESSING (SET/IT/BT/E832)		
Module Name	Content	No. of Hrs.	
Module 1	Introduction to Natural Language Understanding: The study of Language, Applications of NLP,	10	
	Evaluating Language Understanding Systems, Different levels of Language Analysis, Representations		
	and Understanding, Organization of Natural language Understanding Systems, Linguistic Background:		
	An outline of English syntax.		
Module 2	Introduction to semantics and knowledge representation, Some applications like machine translation,	8	
	database interface.		
Module 3	Grammars and Parsing: Grammars and sentence Structure, Top-Down and Bottom-Up Parsers,	8	
	Transition Network Grammars, Top- Down Chart Parsing. Feature Systems and Augmented		
	Grammars: Basic Feature system for English, Morphological Analysis and the Lexicon, Parsing with		
	Features, Augmented Transition Networks.		
Module 4	Grammars for Natural Language: Auxiliary Verbs and Verb Phrases, Movement Phenomenon in	8	
	Language, Handling questions in Context-Free Grammars. Human preferences in Parsing, Encoding		
	uncertainty, Deterministic Parser.		
Module 5	Ambiguity Resolution: Statistical Methods, Probabilistic Language Processing, Estimating	8	
	Probabilities, Part-of-Speech tagging, Obtaining Lexical Probabilities, Probabilistic Context-Free		
	Grammars, Best First Parsing. Semantics and Logical Form, Word senses and Ambiguity, Encoding		
	Ambiguity in Logical Form.		
	Total No. of Hours	42	
Text Books	1. Akshar Bharti, Vineet Chaitanya and Rajeev Sangal, "NLP: A Paninian Perspective", Prentice	Hall	
References	1. James Allen, "Natural Language Understanding", Pearson Education		
	2. D. Jurafsky, J. H. Martin, "Speech and Language Processing", Pearson Education		
	3. L.M. Ivansca, S. C. Shapiro, "Natural Language Processing and Language Representation"		
	4. T. Winograd, "Language as a Cognitive Process", Addison-Wesley		

PATTERN RECOGNITION (SET/IT/BT/E833)		
Module Name	Content	No. of Hrs.
Module 1	Introduction to pattern recognition, types of images, regular pattern, irregular pattern, Approaches to pattern recognition, parametric, non parametric approaches ,Feature selection, Search methods, Pattern recognition applications.	10
Module 2	Classification Naïve Bayes ,Random tree , Random forest, Classifier Ensembles, Classifier combination techniques ,Bagging , boosting, stacking , linear regression , Multiple Polynomial regression, classification using SVM.	8
Module 3	Types of Clustering, K-Mean Clustering, Iso-data Clustering, Clustering Metrics, Clustering applications, Fuzzy K-Mean, Clustering tendency, Semi Supervised learning.	8
Module 4	Explanation of how fuzzy approach can be applied to pattern recognition, Classificatory Analysis Preprocessing, Feature Detection and Primitive Extraction, Adaptive Classification of fuzzy grammar. Fuzzy variants of Classification and Clustering Algorithm.	8
Module 5	Neural networks fundamentals, Genetic Algorithms, Neural and Genetic based approaches for Pattern. Self organizing maps, Advantages/Disadvantages of Neural based approaches for Pattern Recognition.	8
	Total No. of Hours	42
Text Books	1. Earl Gose, "Pattern Recognition and Image Analysis", Prentice Hall	
References	 David G. Stork, Peter E. Hart, and Richard O. Duda , "Pattern Classification", John Wiley S Theodoridis and K Koutroumbas, "Pattern Recognition", Academic Press C Bishop, "Pattern Recognition and Machine Learning", Springer 	and Sons

E-BUSINESS (SET/IT/BT/E834)		
Module Name	Content	No. of Hrs.
Module 1	Introduction to E-business: High technology, semiconductors, the internet, history development,	8
	characteristics, features, definition of EDI, e-commerce, e-business types, Web services, Web based	
	market, Understanding and measuring the Digital Economy.	
Module 2	E-business Architecture: E-business Architecture, framework, characteristics, models, standardization,	8
	security issues- vulnerability management, threat management, Infrastructure Security.	
Module 3	E-business plan and Strategies: Fundamentals of e- business plans, types, features, importance,	8
	business logic, procedures, process, data integration, customer information, security, routing,	
	approvals and reports. Introduction to e-business procurement, e-sourcing, e-marketplace, e-payment	
	schemes.	
Module 4	<u>E-business Application and Application Development :</u> CRM, SCM, ERP, sales CM, Financial Value	10
	Chain Management system, BPR its definition, characteristics, Tools of e-business application, search	
	engines, portals, online shopping, ORM solutions, Web technologies: XML, plug-ins, JavaScript,	
	Open source, Oracle e-business suite, IBM e-business suite, Micro Strategy, Silver line solutions etc.	
Module 5	E-Business Marketing Strategies and Knowledge Management: Internet marketing technologies, Web	8
	designs, content management Promotion mix, Virtual societies, localization, one to one marketing,	
	Introduction to knowledge management and internet data using extended enterprise.	
	Total No. of Hours	42
Text Books	1. Daniel Amor, "E-Business (R) Evolution", Prentice Hall	
References	1. Robert W. Price, "E-Business 01/02 ", McGraw-Hill	
	2. Ravi Kalakota, Marcia Robinson, Don Tapscott, "E-Business: Roadmap for Success", Addison-	Wesley

PROJECT AND DISSERTATION (SET/IT/BT/C806)		
Module Name	Content	No. of Hrs.
Module 1	The Major Project(s) will be evaluated on the basis of the weightage of 20% of Report writing, 50% of the Project work and 30% for Presentation and Viva. There shall be two presentations for each Project evaluation and at least one outside expert will be the member of the evaluation committee for final evaluation.	72x2
Total No. of Hours		144

The Syllabi has been framed in accordance to the UGC guidelines/ norms, as desired by the university letter number.: ACADMIC/976, dated 20-04-2015.

(Prof. S. C. Bhatt) Expert (Prof. D. S. Negi) Expert

(Prof. M. M. S. Rauthan) Chairman (Mr. Vinay Prasad Tamta) Member