





Mechanical Engineering Department School of Engineering and Technology H.N.B Garhwal University, Srinagar, Uttarakhand 246174 www.hnbgu.ac.in

# **SEMESTER- WISE LIST SUBJECTS (AS PER NEP 2020)**

| S. No. | Category                       | Course Code    | Course Title                                              | L  | Т | Р | Contact<br>Hrs./Week | Credits |
|--------|--------------------------------|----------------|-----------------------------------------------------------|----|---|---|----------------------|---------|
| 1.     | Basic Science/                 | SET/SH/BT/C101 | Mathematics I                                             | 3  | 1 | - | 4                    | 4       |
| 2.     | Multidisciplinary              | SET/SH/BT/C102 | Physics                                                   | 3  | 1 | - | 4                    | 4       |
| 3.     | Com Dooin                      | SET/EE/BT/C103 | Basic Electrical Engineering                              | 3  | 1 | - | 4                    | 4       |
| 4.     | Engineering                    | SET/EC/BT/C104 | Basic Electronics                                         | 3  | 1 | - | 4                    | 4       |
| 5.     | Subjects                       | SET/IT/BT/C105 | Fundamental of Information<br>Technology                  | 3  | 1 | - | 4                    | 4       |
| 6.     | Core/ Basic                    | SET/SH/BT/C107 | Physics Lab                                               | -  |   | 1 | 2                    | 1       |
| 7.     | Engineering<br>Subjects Labs   | SET/ME/BT/C108 | Engineering Graphics and<br>Workshop Practice             | -  | - | 1 | 2                    | 1       |
| 8.     | Extracurricular<br>Courses/ CC | VAC-1/AECC106  | *Understanding and Connecting<br>with Environment         | 2  | - | - | 2                    | 2       |
| 9.     | Skill Course                   | SET/ME/SC/C110 | Machining Practice Lab-I<br>(Skill Enhancement<br>Course) | -  | - | 1 | 4                    | 2       |
|        | Total                          |                |                                                           | 17 | 5 | 3 | 30                   | 26      |

# SEMESTER I

\*Common syllabus for all UG courses of the university.

# <u>SEMESTER II</u>

| S. No. | Category                       | Course Code    | Course Title                                            | L  | Т | Р | Contact<br>Hrs./Week | Credits |
|--------|--------------------------------|----------------|---------------------------------------------------------|----|---|---|----------------------|---------|
| 1.     | Basic Science/                 | SET/SH/BT/C201 | Mathematics II                                          | 3  | 1 | - | 4                    | 4       |
| 2.     | Multidisciplinary              | SET/SH/BT/C203 | Chemistry                                               | 3  | 1 | - | 4                    | 4       |
| 3.     | Core Basic                     | SET/ME/BT/C202 | Basic Mechanical Engineering                            | 3  | 1 | - | 4                    | 4       |
| 4.     | Engineering                    | SET/ME/BT/C204 | Engineering Mechanics                                   | 3  | 1 | - | 4                    | 4       |
| 5.     | Subjects                       | SET/CS/BT/C205 | C Programming                                           | 3  | 1 | - | 4                    | 4       |
| 6.     | Core/ Basic<br>Engineering     | SET/SH/BT/C208 | Chemistry Lab                                           | -  | - | 1 | 2                    | 1       |
| 7.     | Subjects Labs                  | SET/CS/BT/C209 | C Programming Lab                                       | -  | - | 1 | 2                    | 1       |
| 8.     | Extracurricular<br>Courses/ CC | AECC206/VAC-2  | *Life Skills and Personality<br>Development             | 2  | - | - | 2                    | 2       |
| 9.     | Skill Course                   | SET/ME/SC/C210 | Machining Practice Lab-II<br>(Skill Enhancement Course) | -  | - | 1 | 4                    | 2       |
|        |                                | Total          |                                                         | 17 | 5 | 3 | 30                   | 26      |

\*Common syllabus for all UG courses of the university.

# SEMESTER III

| S. No. | Category                            | Course Code    | Course Title                              | L  | Т | Р | Contact<br>Hrs./<br>Week | Credits |
|--------|-------------------------------------|----------------|-------------------------------------------|----|---|---|--------------------------|---------|
| 1.     | Basic Science/<br>Multidisciplinary | SET/SH/BT/C301 | Mathematics III                           | 3  | 1 | - | 4                        | 4       |
| 2.     |                                     | SET/ME/BT/C302 | Solid Mechanics                           | 3  | 1 | - | 4                        | 4       |
| 3.     | Core Subjects                       | SET/ME/BT/C303 | Fluid Mechanics                           | 3  | 1 | - | 4                        | 4       |
| 4.     |                                     | SET/ME/BT/C304 | Engineering Thermodynamics                | 3  | 1 | - | 4                        | 4       |
| 5.     | Interdisciplinary<br>Subject        | SET/ME/BT/C305 | Engineering Materials and<br>Applications | 3  | 1 | - | 4                        | 4       |
| 6.     | Core Subjects                       | SET/ME/BT/C306 | Fluid Mechanics Lab                       | -  | - | 1 | 2                        | 1       |
| 7.     | Based Labs                          | SET/ME/BT/C307 | Engineering Material & Testing<br>Lab.    | -  | - | 1 | 2                        | 1       |
| 8.     | Extracurricular<br>Courses/ CC      | VAC-3          | Indian Knowledge System-I*                | 2  | - | - | 2                        | 2       |
| 9.     | Skill Course                        | SET/ME/BT/S308 | Programming for Problem<br>Solving        | -  | - | 1 | 4                        | 2       |
|        |                                     | TOTAL          |                                           | 17 | 5 | 3 | 30                       | 26      |

\*University will prepare a course with focus on Indian Knowledge System-I.

# SEMESTER IV

| S. No. | Category                       | Code           | Course Title                             | L | Т | Р | Contact<br>Hrs./Week | Credits |
|--------|--------------------------------|----------------|------------------------------------------|---|---|---|----------------------|---------|
| 1.     |                                | SET/ME/BT/C401 | Kinematics of Machines                   | 3 | 1 | - | 4                    | 4       |
| 2.     | Core Subjects                  | SET/ME/BT/C402 | Manufacturing Technology                 | 3 | 1 | - | 4                    | 4       |
| 3.     |                                | SET/ME/BT/C403 | IC Engines                               | 3 | 1 | - | 4                    | 4       |
| 4.     |                                | SET/ME/BT/C404 | Applied Thermodynamics                   | 3 | 1 | - | 4                    | 4       |
| 5.     | Interdisciplinary<br>Subject   | SET/ME/BT/C405 | Measurement, Metrology &<br>Control      | 3 | 1 | - | 4                    | 4       |
| 6.     | Com Subjects                   | SET/ME/BT/C406 | Manufacturing Technology Lab.            | - | - | 1 | 2                    | 1       |
| 7.     | Based Labs                     | SET/ME/BT/C407 | Measurement, Metrology &<br>Control Lab. | - | - | 1 | 2                    | 1       |
| 8.     | Extracurricular<br>Courses/ CC | AMDSC-2        | *Basic Yoga Practices                    | 2 | - | - | 2                    | 2       |
| 9.     | Skill Course                   | SET/ME/BT/S408 | Machine Design, AutoCAD 2D-<br>3D        | - | - | 1 | 4                    | 2       |
| TOTAL  |                                |                |                                          |   |   | 3 | 30                   | 26      |

\* University will prepare a course with focus on Basic Yoga Practices

# SEMESTER V

| S. No. | Category                                             | S. No.         | Course Title                                          | L  | Т | Р | Contact<br>Hrs./Week | Credits |
|--------|------------------------------------------------------|----------------|-------------------------------------------------------|----|---|---|----------------------|---------|
| 1.     |                                                      | SET/ME/BT/C501 | Machine Design-I                                      | 3  | 1 | - | 4                    | 4       |
| 2.     | Core Subjects                                        | SET/ME/BT/C502 | Dynamics of Machines                                  | 3  | 1 | - | 4                    | 4       |
| 3.     |                                                      | SET/ME/BT/C503 | Refrigeration & Air<br>Conditioning                   | 3  | 1 | - | 4                    | 4       |
| 4.     |                                                      |                | <sup>@</sup> Program Elective-I                       | 3  | 1 | - | 4                    | 4       |
| 5.     | Open Elective /<br>Inter-<br>disciplinary<br>Subject |                | #Open Elective-I                                      | 3  | 1 | - | 4                    | 4       |
| 6.     | Core Subjects                                        | SET/ME/BT/C504 | Machine & Mechanism Lab.                              | -  | - | 1 | 2                    | 1       |
| 7.     | Based Labs                                           | SET/ME/BT/C505 | Refrigeration & Air<br>Conditioning Lab.              |    | - | 1 | 2                    | 1       |
| 8.     | Extracurricular/<br>Courses/<br>Compulsory course    | SET/ME/BT/M505 | *Culture, traditions and moral values/ Yoga Practices | -  | - | 1 | 4                    | 2       |
| 9.     | Skill Course                                         | SET/ME/BT/S506 | Mini Project-I                                        | -  | - | 2 | 4                    | 2       |
|        |                                                      | TOTAL          |                                                       | 15 | 5 | 4 | 32                   | 26      |

@Course offered by the department from the Program Elective- I list as given below.
#Courses offered by any other department/ Department of School of Engineering and Technology.
\*University will prepare a course with focus on Indian/ Regional culture studies. In case no syllabus is prepared by the university then yoga Practices course will be offered.

|                     | S. No. | Code           | Course Title                 |
|---------------------|--------|----------------|------------------------------|
|                     | 1.     | SET/ME/BT/E507 | Mechatronics                 |
| Program Elective- I | 2.     | SET/ME/BT/E508 | Engineering Tribology        |
|                     | 3.     | SET/ME/BT/E509 | CNC Machines And Programming |
|                     | 4.     | SET/ME/BT/E510 | Nanotechnology               |

|                  | S. No. | Code            | Course Title                          |
|------------------|--------|-----------------|---------------------------------------|
|                  | 1.     | SET/ME/BT/OE511 | Python                                |
| Open Elective- I | 2.     | SET/ME/BT/OE512 | Industrial Engineering and Management |
|                  | 3.     | SET/ME/BT/OE513 | Numerical Methods in Engineering      |
|                  | 4.     | SET/ME/BT/OE514 | Human resource management             |

# SEMESTER VI

| S. No. | Category                                               | Code           | Course Title                                        | L | Т | Р | Contact<br>Hrs./Wee<br>k | Credits |
|--------|--------------------------------------------------------|----------------|-----------------------------------------------------|---|---|---|--------------------------|---------|
| 1.     |                                                        | SET/ME/BT/C601 | Machine Design-II                                   | 3 | 1 | - | 4                        | 4       |
| 2.     | Core Subjects                                          | SET/ME/BT/C602 | Fluid Machinery                                     | 3 | 1 | _ | 4                        | 4       |
| 3.     |                                                        | SET/ME/BT/C603 | Heat & Mass Transfer                                | 3 | 1 | - | 4                        | 4       |
| 4.     |                                                        |                | <sup>@</sup> Program Elective-2                     | 3 | 1 | - | 4                        | 4       |
| 5.     | Open<br>Elective/<br>Inter-<br>disciplinary<br>Subject |                | #Open Elective-2                                    | 3 | 1 |   | 4                        | 4       |
| 6.     | Core                                                   | SET/ME/BT/C604 | Heat & Mass Transfer Lab.                           | - | - | 1 | 2                        | 1       |
| 7.     | Subjects<br>Based Labs                                 | SET/ME/BT/C605 | Fluid Machinery Lab                                 |   |   | 1 | 2                        | 1       |
| 8.     | Life Skills<br>and<br>personality<br>development       | SET/ME/BT/M606 | * Communication Skills<br>Course/ Technical Seminar | - | - | 1 | 4                        | 2       |
| 9.     | Skill Course                                           | SET/ME/BT/S607 | Mini Project-II                                     | - | - | 1 | 4                        | 2       |
|        | TOTAL                                                  |                |                                                     |   |   |   | 4                        | 32      |

(a) Course offered by the department from the Program Elective- II list as given below.
 #Courses offered by any other department of School of Engineering and Technology.
 \*University will prepare communication course in Modern/Indian languages from which student will select one language course.
 The course will be more on applied side with giving students a chance to develop their soft skills. In case no syllabus is prepared by the university then Technical Seminar course will be offered.

|                      | S. No. | Code           | Course Title                             |
|----------------------|--------|----------------|------------------------------------------|
|                      | 1.     | SET/ME/BT/E608 | Operation Research Techniques            |
| Program Elective- II | 2.     | SET/ME/BT/E609 | Advanced Machine Tools<br>and Operations |
|                      | 3.     | SET/ME/BT/E610 | Maintenance Engineering                  |
|                      | 4.     | SET/ME/BT/E611 | Smart Materials                          |

|                        | S. No. | Code            | Course Title                  |
|------------------------|--------|-----------------|-------------------------------|
|                        | 1.     | SET/ME/BT/OE612 | Machine Learning              |
| <b>Open Elective-2</b> | 2.     | SET/ME/BT/OE613 | Entrepreneur Essential        |
|                        | 3.     | SET/ME/BT/OE614 | Work Study and Ergonomics     |
|                        | 4.     | SET/ME/BT/OE615 | Flexible Manufacturing System |

# **SEMESTER VII**

| S. No. | Category                                      | Code           | Course Title                       | L | Т  | Р  | Contact<br>Hrs./Week | Credits |
|--------|-----------------------------------------------|----------------|------------------------------------|---|----|----|----------------------|---------|
| 1.     | Come Subjects                                 | SET/ME/BT/C701 | Automobile Engineering             | 3 | 1  | -  | 4                    | 4       |
| 2.     | Core Subjects                                 |                | <sup>@</sup> Program Elective-3    | 3 | 1  | -  | 4                    | 4       |
| 3.     |                                               |                | <sup>@</sup> Program Elective-4    | 3 | 1  | -  | 4                    | 4       |
| 4.     | Core Subjects                                 | SET/ME/BT/C702 | Automobile Engineering             | - | -  | 1  | 2                    | 1       |
| 5.     | Based Labs                                    | SET/ME/BT/C703 | Industrial Training Seminar        | - | -  | 1  | 2                    | 1       |
| 6.     | Life Skills and<br>personality<br>development | SET/SH/BT/L701 | *Essential Management<br>Practices | 2 | -  | -  | 2                    | 2       |
| 7.     | Skill Course                                  | SET/ME/BT/S704 | Major Project Preparation          | - | -  | 1  | 8                    | 4       |
|        |                                               | 11             | 3                                  | 3 | 26 | 20 |                      |         |

@Course offered by the department from the Program Elective- II list as given below.

#Courses offered by any other department of School of Engineering and Technology.

\*University will prepare a course with focus on Essential Management Practices

**Programme Electives (PEL)**: Total **2** to be taken, at least one from each group – *Technology* and *Industry Sector*, based on Project topic and individual interest. Illustrative courses are listed here.

| S.N. | PEL (Technology)                                  | Code           | PEL (Industry Sector)   | Code            |
|------|---------------------------------------------------|----------------|-------------------------|-----------------|
| 1    |                                                   |                |                         |                 |
| 1    | Finite Element Method                             | SET/ME/BT/E/05 | CAD/CAM and Robotics    | SET/ME/BT/OE/09 |
| 2    | Renewable Energy SET/ME/BT/E706 Product Design an |                | Product Design and      | SET/ME/BT/OE710 |
|      | Engineering                                       |                | Development             |                 |
| 3    | Additive                                          | SET/ME/BT/E707 | Unconventional          | SET/ME/BT/OE711 |
|      | Manufacturing                                     |                | Manufacturing Processes |                 |
| 4    | Computational Fluid                               | SET/ME/BT/E708 | Turbo Machines          | SET/ME/BT/OE712 |
|      | Dynamics                                          |                |                         |                 |

# **SEMESTER VIII**

| S. No. | Category                                      | Code           | Course Title                    | L | Т | Р | Contact<br>Hrs./Week | Credits |
|--------|-----------------------------------------------|----------------|---------------------------------|---|---|---|----------------------|---------|
| 1.     |                                               | SET/ME/BT/C801 | Power Plant Engineering         | 3 | 1 | - | 4                    | 4       |
| 2.     | Core Subjects                                 |                | <sup>@</sup> Program Elective-5 | 3 | 1 | - | 4                    | 4       |
| 3.     |                                               |                | <sup>@</sup> Program Elective-6 | 3 | 1 | - | 4                    | 4       |
| 4.     | Life Skills and<br>personality<br>development | SET/SH/BT/L801 | *Disaster Management            | - | - | 1 | 4                    | 2       |
| 5.     | Skill Course                                  | SET/ME/BT/S802 | Major Project                   | - | - | 1 | 12                   | 6       |
|        |                                               | Total          |                                 | 9 | 3 | 2 | 28                   | 20      |

@Course offered by the department from the Program Elective- II list as given below.

#Courses offered by any other department of School of Engineering and Technology.

\* University will prepare a course with focus on Disaster Management

**Programme Electives (PEL)**: Total **2** to be taken, at least one from each group – *Technology* and *Industry Sector*, based on Project topic and individual interest. Illustrative courses are listed here.

| S.N. | PEL (Technology)                          | Credit         | PEL (Industry<br>Sector)                        | Credit          |
|------|-------------------------------------------|----------------|-------------------------------------------------|-----------------|
| 1    | Advance Welding<br>Technology             | SET/ME/BT/E802 | Composite Material                              | SET/ME/BT/OE806 |
| 2    | Gas Dynamics and Jet<br>Propulsion System | SET/ME/BT/E803 | Computer Integrated<br>Manufacturing<br>Systems | SET/ME/BT/OE807 |
| 3    | Solar Thermal Power<br>Engineering        | SET/ME/BT/E804 | Optimization<br>Techniques in<br>Engineering    | SET/ME/BT/OE808 |
| 4    | Experimental Stress<br>Analysis           | SET/ME/BT/E805 | Biomedical<br>Engineering                       | SET/ME/BT/OE809 |

# Curriculum of Mechanical Engineering

| Semester I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Credit                                                                                                 | Semester 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Credit                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 1. Mathematics I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                      | 1. Mathematics II                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                          |
| 2. Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                      | 2. Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                          |
| 3. Basic electrical engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                      | 3. Basic mechanical engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                          |
| 4. Basic electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                      | 4. Engineering mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                          |
| 5. Fundamental of information technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                      | 5. C programming                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                          |
| 6. Physics lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                      | 6. Chemistry lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                          |
| 7. Engineering graphics and workshop practice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                      | 7. C programming lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                          |
| 8. Understanding and connecting with environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                      | 8. Life skills and personality development                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                          |
| 8. Basic electrical engineering lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                      | 9. Basic electronics lab                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                          |
| Total credits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26                                                                                                     | Total credits                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26                                                                         |
| Semester 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Credit                                                                                                 | Semester 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Credit                                                                     |
| 1. Mathematics III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                      | 1. Kinematics of Machines                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                          |
| 2. Solid mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                      | 2. Manufacturing Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                          |
| 3. Fluid mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                      | 3.IC Engines                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                          |
| 4. Engineering thermodynamics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                      | 4. Applied Thermodynamics                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                          |
| 5. Engineering materials and applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                      | 5. Measurement, Metrology & Control                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                          |
| 6. Fluid mechanics lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                      | 6. Manufacturing Technology Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                          |
| 7. Engineering materials and testing lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                      | 7 Measurement, Metrology & Control Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                          |
| 8. Indian Knowledge System-I*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                      | 8. Indian Knowledge System-II                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                          |
| 9. Programming for problem solving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                      | 9. Machine design and AutoCAD 2D-3D                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                          |
| Total credits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26                                                                                                     | Total credits                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26                                                                         |
| Semester 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Credit                                                                                                 | Semester 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Credit                                                                     |
| 1 Machine Design-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                      | 1 Machine Design-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                          |
| 2 Dynamics of Machines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                      | 2 Fluid Machinery                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                          |
| 2. Dynamics of Waterines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                          |
| 3 Refrigeration & Air Conditioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                      | 3 Heat & Mass Transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |
| 3. Refrigeration & Air Conditioning<br>4. Program Elective-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                      | 3. Heat & Mass Transfer<br>4. Program Elective-2                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                          |
| <ol> <li>Refrigeration &amp; Air Conditioning</li> <li>Program Elective-I</li> <li>Open Elective-I</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4<br>4<br>4                                                                                            | <ol> <li>Heat &amp; Mass Transfer</li> <li>Program Elective-2</li> <li>Open Elective-2</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                          |
| <ol> <li>Refrigeration &amp; Air Conditioning</li> <li>Program Elective-I</li> <li>Open Elective-I</li> <li>Machine &amp; Mechanism Lab</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4<br>4<br>4                                                                                            | <ol> <li>Heat &amp; Mass Transfer</li> <li>Program Elective-2</li> <li>Open Elective-2</li> <li>Heat &amp; Mass Transfer Lab</li> </ol>                                                                                                                                                                                                                                                                                                                                                | 4 4 1                                                                      |
| <ol> <li>Refrigeration &amp; Air Conditioning</li> <li>Program Elective-I</li> <li>Open Elective-I</li> <li>Machine &amp; Mechanism Lab.</li> <li>Refrigeration &amp; Air Conditioning Lab</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                           | 4<br>4<br>1<br>1                                                                                       | <ol> <li>Heat &amp; Mass Transfer</li> <li>Program Elective-2</li> <li>Open Elective-2</li> <li>Heat &amp; Mass Transfer Lab.</li> <li>Fluid Machinery Lab</li> </ol>                                                                                                                                                                                                                                                                                                                  | 4<br>4<br>1                                                                |
| <ol> <li>Refrigeration &amp; Air Conditioning</li> <li>Program Elective-I</li> <li>Open Elective-I</li> <li>Machine &amp; Mechanism Lab.</li> <li>Refrigeration &amp; Air Conditioning Lab.</li> <li>Culture traditions and moral values/ Yoga Practices</li> </ol>                                                                                                                                                                                                                                                                                                                             | 4<br>4<br>1<br>1<br>2                                                                                  | <ol> <li>Heat &amp; Mass Transfer</li> <li>Program Elective-2</li> <li>Open Elective-2</li> <li>Heat &amp; Mass Transfer Lab.</li> <li>Fluid Machinery Lab</li> <li>Communication Skills Course/</li> </ol>                                                                                                                                                                                                                                                                            | 4<br>4<br>1<br>1<br>2                                                      |
| <ol> <li>Refrigeration &amp; Air Conditioning</li> <li>Program Elective-I</li> <li>Open Elective-I</li> <li>Machine &amp; Mechanism Lab.</li> <li>Refrigeration &amp; Air Conditioning Lab.</li> <li>Culture, traditions and moral values/ Yoga Practices</li> <li>Mini project 1</li> </ol>                                                                                                                                                                                                                                                                                                    | 4<br>4<br>1<br>1<br>2<br>2                                                                             | <ol> <li>Heat &amp; Mass Transfer</li> <li>Program Elective-2</li> <li>Open Elective-2</li> <li>Heat &amp; Mass Transfer Lab.</li> <li>Fluid Machinery Lab</li> <li>Communication Skills Course/<br/>Technical Seminar</li> </ol>                                                                                                                                                                                                                                                      | 4<br>4<br>1<br>1<br>2                                                      |
| <ol> <li>Refrigeration &amp; Air Conditioning</li> <li>Program Elective-I</li> <li>Open Elective-I</li> <li>Machine &amp; Mechanism Lab.</li> <li>Refrigeration &amp; Air Conditioning Lab.</li> <li>Culture, traditions and moral values/ Yoga Practices</li> <li>Mini project 1</li> </ol>                                                                                                                                                                                                                                                                                                    | 4<br>4<br>1<br>1<br>2<br>2                                                                             | <ol> <li>Heat &amp; Mass Transfer</li> <li>Program Elective-2</li> <li>Open Elective-2</li> <li>Heat &amp; Mass Transfer Lab.</li> <li>Fluid Machinery Lab</li> <li>Communication Skills Course/<br/>Technical Seminar</li> <li>Mini Project-II</li> </ol>                                                                                                                                                                                                                             | 4<br>4<br>1<br>1<br>2<br>2                                                 |
| <ol> <li>Refrigeration &amp; Air Conditioning</li> <li>Program Elective-I</li> <li>Open Elective-I</li> <li>Machine &amp; Mechanism Lab.</li> <li>Refrigeration &amp; Air Conditioning Lab.</li> <li>Culture, traditions and moral values/ Yoga Practices</li> <li>Mini project 1</li> </ol> Total credits                                                                                                                                                                                                                                                                                      | 4<br>4<br>1<br>1<br>2<br>2<br><b>2</b><br><b>2</b>                                                     | <ol> <li>Heat &amp; Mass Transfer</li> <li>Program Elective-2</li> <li>Open Elective-2</li> <li>Heat &amp; Mass Transfer Lab.</li> <li>Fluid Machinery Lab</li> <li>Communication Skills Course/<br/>Technical Seminar</li> <li>Mini Project-II</li> <li>Total credits</li> </ol>                                                                                                                                                                                                      | 4<br>4<br>1<br>1<br>2<br>2<br>2<br>6                                       |
| <ol> <li>Refrigeration &amp; Air Conditioning</li> <li>Program Elective-I</li> <li>Open Elective-I</li> <li>Machine &amp; Mechanism Lab.</li> <li>Refrigeration &amp; Air Conditioning Lab.</li> <li>Culture, traditions and moral values/ Yoga Practices</li> <li>Mini project 1</li> </ol> Total credits Semester 7                                                                                                                                                                                                                                                                           | 4<br>4<br>1<br>1<br>2<br>2<br><b>26</b><br><b>Credit</b>                                               | <ol> <li>Heat &amp; Mass Transfer</li> <li>Program Elective-2</li> <li>Open Elective-2</li> <li>Heat &amp; Mass Transfer Lab.</li> <li>Fluid Machinery Lab</li> <li>Communication Skills Course/<br/>Technical Seminar</li> <li>Mini Project-II</li> <li>Total credits</li> <li>Semester 8</li> </ol>                                                                                                                                                                                  | 4<br>4<br>1<br>1<br>2<br>2<br>26<br>Credit                                 |
| <ol> <li>Refrigeration &amp; Air Conditioning</li> <li>Program Elective-I</li> <li>Open Elective-I</li> <li>Machine &amp; Mechanism Lab.</li> <li>Refrigeration &amp; Air Conditioning Lab.</li> <li>Culture, traditions and moral values/ Yoga Practices</li> <li>Mini project 1</li> </ol> Total credits Semester 7 <ol> <li>Automobile Engineering</li> </ol>                                                                                                                                                                                                                                | 4<br>4<br>1<br>1<br>2<br>2<br><b>26</b><br><b>Credit</b><br>4                                          | <ol> <li>Heat &amp; Mass Transfer</li> <li>Program Elective-2</li> <li>Open Elective-2</li> <li>Heat &amp; Mass Transfer Lab.</li> <li>Fluid Machinery Lab</li> <li>Communication Skills Course/<br/>Technical Seminar</li> <li>Mini Project-II</li> <li>Total credits</li> <li>Semester 8</li> <li>Power Plant Engineering</li> </ol>                                                                                                                                                 | 4<br>4<br>1<br>1<br>2<br>2<br>26<br>Credit<br>4                            |
| <ul> <li>3. Refrigeration &amp; Air Conditioning</li> <li>4. Program Elective-I</li> <li>5. Open Elective-I</li> <li>6. Machine &amp; Mechanism Lab.</li> <li>7. Refrigeration &amp; Air Conditioning Lab.</li> <li>8. Culture, traditions and moral values/ Yoga Practices</li> <li>9. Mini project 1</li> </ul> Total credits Semester 7 <ol> <li>Automobile Engineering</li> <li>Program Elective-3</li> </ol>                                                                                                                                                                               | 4<br>4<br>1<br>1<br>2<br>2<br><b>26</b><br><b>Credit</b><br>4<br>4                                     | <ol> <li>Heat &amp; Mass Transfer</li> <li>Program Elective-2</li> <li>Open Elective-2</li> <li>Heat &amp; Mass Transfer Lab.</li> <li>Fluid Machinery Lab</li> <li>Communication Skills Course/<br/>Technical Seminar</li> <li>Mini Project-II</li> <li>Total credits</li> <li>Semester 8</li> <li>Power Plant Engineering</li> </ol>                                                                                                                                                 | 4<br>4<br>1<br>1<br>2<br>2<br>26<br><b>Credit</b><br>4<br>4                |
| <ul> <li>3. Refrigeration &amp; Air Conditioning</li> <li>4. Program Elective-I</li> <li>5. Open Elective-I</li> <li>6. Machine &amp; Mechanism Lab.</li> <li>7. Refrigeration &amp; Air Conditioning Lab.</li> <li>8. Culture, traditions and moral values/ Yoga Practices</li> <li>9. Mini project 1</li> </ul> Total credits Semester 7 <ol> <li>Automobile Engineering</li> <li>Program Elective-3</li> <li>Program Elective-4</li> </ol>                                                                                                                                                   | 4<br>4<br>4<br>1<br>1<br>2<br>2<br>2<br><b>26</b><br><b>Credit</b><br>4<br>4<br>4                      | <ol> <li>Heat &amp; Mass Transfer</li> <li>Program Elective-2</li> <li>Open Elective-2</li> <li>Heat &amp; Mass Transfer Lab.</li> <li>Fluid Machinery Lab</li> <li>Communication Skills Course/<br/>Technical Seminar</li> <li>Mini Project-II</li> <li>Total credits</li> <li>Semester 8</li> <li>Power Plant Engineering</li> </ol>                                                                                                                                                 | 4<br>4<br>1<br>1<br>2<br>2<br>2<br>26<br>Credit<br>4<br>4<br>4             |
| <ul> <li>3. Refrigeration &amp; Air Conditioning</li> <li>4. Program Elective-I</li> <li>5. Open Elective-I</li> <li>6. Machine &amp; Mechanism Lab.</li> <li>7. Refrigeration &amp; Air Conditioning Lab.</li> <li>8. Culture, traditions and moral values/ Yoga Practices</li> <li>9. Mini project 1</li> </ul> Total credits Semester 7 <ul> <li>1. Automobile Engineering</li> <li>2. Program Elective-3</li> <li>3. Program Elective-4</li> <li>4. Automobile &amp; HMT Lab</li> </ul>                                                                                                     | 4<br>4<br>1<br>1<br>2<br>2<br><b>26</b><br><b>Credit</b><br>4<br>4<br>4<br>1                           | <ol> <li>Heat &amp; Mass Transfer</li> <li>Program Elective-2</li> <li>Open Elective-2</li> <li>Heat &amp; Mass Transfer Lab.</li> <li>Fluid Machinery Lab</li> <li>Communication Skills Course/<br/>Technical Seminar</li> <li>Mini Project-II</li> <li>Total credits</li> <li>Semester 8</li> <li>Power Plant Engineering</li> <li>Program Elective-5</li> </ol>                                                                                                                     | 4<br>4<br>1<br>2<br>2<br>26<br>Credit<br>4<br>4<br>4<br>2                  |
| <ul> <li>3. Refrigeration &amp; Air Conditioning</li> <li>4. Program Elective-I</li> <li>5. Open Elective-I</li> <li>6. Machine &amp; Mechanism Lab.</li> <li>7. Refrigeration &amp; Air Conditioning Lab.</li> <li>8. Culture, traditions and moral values/ Yoga Practices</li> <li>9. Mini project 1</li> </ul> Total credits Semester 7 <ul> <li>1. Automobile Engineering</li> <li>2. Program Elective-3</li> <li>3. Program Elective-4</li> <li>4. Automobile &amp;HMT Lab</li> <li>5. Industrial Training Seminar</li> </ul>                                                              | 4<br>4<br>1<br>1<br>2<br>2<br><b>26</b><br><b>Credit</b><br>4<br>4<br>4<br>1<br>1                      | <ul> <li>3. Heat &amp; Mass Transfer</li> <li>4. Program Elective-2</li> <li>5. Open Elective-2</li> <li>6. Heat &amp; Mass Transfer Lab.</li> <li>7. Fluid Machinery Lab</li> <li>8. Communication Skills Course/<br/>Technical Seminar</li> <li>9. Mini Project-II</li> <li>Total credits</li> <li>Semester 8</li> <li>1. Power Plant Engineering</li> <li>2. Program Elective-5</li> <li>3. Program Elective-6</li> </ul>                                                           | 4<br>4<br>1<br>1<br>2<br>2<br>26<br>Credit<br>4<br>4<br>4<br>2<br>6        |
| <ul> <li>3. Refrigeration &amp; Air Conditioning</li> <li>4. Program Elective-I</li> <li>5. Open Elective-I</li> <li>6. Machine &amp; Mechanism Lab.</li> <li>7. Refrigeration &amp; Air Conditioning Lab.</li> <li>8. Culture, traditions and moral values/ Yoga Practices</li> <li>9. Mini project 1</li> </ul> Total credits Semester 7 <ul> <li>1. Automobile Engineering</li> <li>2. Program Elective-3</li> <li>3. Program Elective-4</li> <li>4. Automobile &amp; HMT Lab</li> <li>5. Industrial Training Seminar</li> <li>6. Essential Management Practices</li> </ul>                  | 4<br>4<br>1<br>1<br>2<br>2<br><b>26</b><br><b>Credit</b><br>4<br>4<br>4<br>1<br>1<br>2                 | <ul> <li>3. Heat &amp; Mass Transfer</li> <li>4. Program Elective-2</li> <li>5. Open Elective-2</li> <li>6. Heat &amp; Mass Transfer Lab.</li> <li>7. Fluid Machinery Lab</li> <li>8. Communication Skills Course/<br/>Technical Seminar</li> <li>9. Mini Project-II</li> <li>Total credits</li> <li>Semester 8</li> <li>1. Power Plant Engineering</li> <li>2. Program Elective-5</li> <li>3. Program Elective-6</li> <li>4. Disaster Management</li> </ul>                           | 4<br>4<br>1<br>1<br>2<br>2<br>26<br>Credit<br>4<br>4<br>4<br>4<br>2<br>6   |
| <ul> <li>3. Refrigeration &amp; Air Conditioning</li> <li>4. Program Elective-I</li> <li>5. Open Elective-I</li> <li>6. Machine &amp; Mechanism Lab.</li> <li>7. Refrigeration &amp; Air Conditioning Lab.</li> <li>8. Culture, traditions and moral values/ Yoga Practices</li> <li>9. Mini project 1</li> </ul> Total credits Semester 7 <ol> <li>Automobile Engineering</li> <li>Program Elective-3</li> <li>Program Elective-4</li> <li>Automobile &amp;HMT Lab</li> <li>Industrial Training Seminar</li> <li>Essential Management Practices</li> <li>Major Project Preparation</li> </ol>  | 4<br>4<br>4<br>1<br>1<br>2<br>2<br><b>26</b><br><b>Credit</b><br>4<br>4<br>4<br>1<br>1<br>2<br>4       | <ul> <li>3. Heat &amp; Mass Transfer</li> <li>4. Program Elective-2</li> <li>5. Open Elective-2</li> <li>6. Heat &amp; Mass Transfer Lab.</li> <li>7. Fluid Machinery Lab</li> <li>8. Communication Skills Course/<br/>Technical Seminar</li> <li>9. Mini Project-II</li> <li>Total credits</li> <li>Semester 8</li> <li>1. Power Plant Engineering</li> <li>2. Program Elective-5</li> <li>3. Program Elective-6</li> <li>4. Disaster Management</li> <li>5. Major Project</li> </ul> | 4<br>4<br>1<br>1<br>2<br>2<br>26<br>Credit<br>4<br>4<br>4<br>2<br>6        |
| <ul> <li>3. Refrigeration &amp; Air Conditioning</li> <li>4. Program Elective-I</li> <li>5. Open Elective-I</li> <li>6. Machine &amp; Mechanism Lab.</li> <li>7. Refrigeration &amp; Air Conditioning Lab.</li> <li>8. Culture, traditions and moral values/ Yoga Practices</li> <li>9. Mini project 1</li> </ul> Total credits Semester 7 <ol> <li>Automobile Engineering</li> <li>Program Elective-3</li> <li>Program Elective-4</li> <li>Automobile &amp; HMT Lab</li> <li>Industrial Training Seminar</li> <li>Essential Management Practices</li> <li>Major Project Preparation</li> </ol> | 4<br>4<br>4<br>1<br>1<br>2<br>2<br><b>26</b><br><b>Credit</b><br>4<br>4<br>4<br>1<br>1<br>2<br>4<br>20 | <ul> <li>3. Heat &amp; Mass Transfer</li> <li>4. Program Elective-2</li> <li>5. Open Elective-2</li> <li>6. Heat &amp; Mass Transfer Lab.</li> <li>7. Fluid Machinery Lab</li> <li>8. Communication Skills Course/<br/>Technical Seminar</li> <li>9. Mini Project-II</li> <li>Total credits</li> <li>Semester 8</li> <li>1. Power Plant Engineering</li> <li>2. Program Elective-5</li> <li>3. Program Elective-6</li> <li>4. Disaster Management</li> <li>5. Major Project</li> </ul> | 4<br>4<br>1<br>1<br>2<br>2<br>26<br><b>Credit</b><br>4<br>4<br>4<br>2<br>6 |

# **DETAILED SYLLABI AS PER NEP-2020**

# SEMESTER I

| S. No. | Category                       | Course Code    | Course Title                                   | L  | Т | Р | Contact<br>Hrs./Week | Credits |
|--------|--------------------------------|----------------|------------------------------------------------|----|---|---|----------------------|---------|
| 1.     | Basic Science/                 | SET/SH/BT/C101 | Mathematics I                                  | 3  | 1 | - | 4                    | 4       |
| 2.     | Multidisciplinary              | SET/SH/BT/C102 | Physics                                        | 3  | 1 | - | 4                    | 4       |
| 3.     | Cara Dasia                     | SET/EE/BT/C103 | Basic Electrical Engineering                   | 3  | 1 | - | 4                    | 4       |
| 4.     | Engineering                    | SET/EC/BT/C104 | Basic Electronics                              | 3  | 1 | - | 4                    | 4       |
| 5.     | Subjects                       | SET/IT/BT/C105 | Fundamentals of Information<br>Technology      | 3  | 1 | - | 4                    | 4       |
| 6.     | Core/ Basic                    | SET/SH/BT/C107 | Physics Lab                                    | -  |   | 1 | 2                    | 1       |
| 7.     | Engineering<br>Subjects Labs   | SET/ME/BT/C108 | Engineering Graphics and<br>Workshop Practice  | -  | - | 1 | 2                    | 1       |
| 8.     | Extracurricular<br>Courses/ CC | VAC-1          | *Understanding and Connecting with Environment | 2  | - | - | 2                    | 2       |
| 9.     | Skill Course                   | SET/IE/BT/S106 | Basic Electrical Engineering Lab               | -  | - | 1 | 4                    | 2       |
|        |                                | Total          |                                                | 17 | 5 | 3 | 30                   | 26      |

\*Common syllabus for all UG courses of the university.

# MATHEMATICS-I

|                          | SET/SH/BT/C101 MATHEMATICS-I                                                                                                                                                                                                                                                                                                                          |                |  |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|
| Course Objective         | To provide essential knowledge of basic tools of Differential Calculus, Vector Calculus and Matrix<br>Algebra for engineering students.                                                                                                                                                                                                               |                |  |  |  |  |
| Course<br>Outcomes       | Implementation of calculus in designing the different structural and mechanical components while matrix algebra is applied in the study of electrical circuits, quantum mechanics and optics.                                                                                                                                                         |                |  |  |  |  |
| Module Name              | Content                                                                                                                                                                                                                                                                                                                                               | No. of<br>Hrs. |  |  |  |  |
| Differential<br>Calculus | Limit, continuity and differentiability of single and two variables, mean value theorems, indeterminateforms;partialderivatives,totalderivative,Euler"sformula,Taylorseries(in oneandtwovariables),maximaandminima,Extremaoffunctionofseveralvariables, Lagrange"s method.                                                                            | 15             |  |  |  |  |
| Vector Calculus          | Interpretation of vectors and scalars, directional derivatives, line, surface and volume integrals, gradient, divergence and curl of a vector and their physical interpretation, Gauss's divergence, Green's and Stoke' stheorem.                                                                                                                     | 12             |  |  |  |  |
| Matrices                 | Vector space, basis, matrices, determinants, Elementary row and column transformation, linear dependence and independence, rank of matrix, consistency of system of linear equation and solution of linear system of equations. Characteristic equation, Cayley- Hamilton theorem, eigen values and eigen vectors, diagonalization, complex matrices. | 15             |  |  |  |  |
|                          | Total No. of Hours                                                                                                                                                                                                                                                                                                                                    |                |  |  |  |  |
| Textbooks                | <ol> <li>R. K. Jain and S. R. K. Iyengar "Advanced Engineering Mathematics", Narosa Publications.</li> <li>B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers.</li> <li>H. K. Das, "Advanced Engineering Mathematics", SChand.</li> <li>Erwin Kreyszig, "Advanced Engineering Mathematics".</li> </ol>                                 |                |  |  |  |  |

# PHYSICS

# **Course objective:**

1. To introduce the student to the basic of wave optics, lasers, and demonstrate their applications in technology.

2. To make students aware about quantum physics phenomena.

3. Give the beginning student an appreciation of recent developments in materials science & engineering within the framework of this class.

4. To review physics in the context of materials science & engineering.

5. Give an introduction to the relation between processing, structure, and physical properties.

| Module Name                                            | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No. of<br>Hrs. |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Optics                                                 | Interference: Coherent Sources, Conditions of Interference, Fresnel's Biprism<br>Experiment, Interference in Thin Films, Newton's Rings; Single and n-Slit Diffraction,<br>Diffraction Grating, Raleigh's Criterion of Resolution, Resolving Power of Telescope,<br>Phenomenon of Double Refraction, Ordinary and Extra-ordinary Rays, Nicol Prism,<br>Circularly and Elliptically Polarized Light, Fresnel Theory, Optical Activity, Specific<br>Rotation; Laser: Principle of Laser Action, Einstein''s Coefficients, Construction and<br>Working of He-Ne and Ruby Laser, Applications of Laser.                                            | 15             |
| Origin of Quantum<br>Mechanics and its<br>Applications | Black body radiation, Planck''s Radiation Law, Wave Particle Duality, de-Broglie hypothesis, Photoelectric effect, Wave Function and its Normalization, Born Interpretation, Schrodinger equation, Particle in a Box, Potential Step (E < Vo),Tunneling effect (Qualitative idea).                                                                                                                                                                                                                                                                                                                                                             | 10             |
| Basics Material<br>Science                             | Introduction to crystal structure of materials, Miller indices for crystallographic planes<br>and directions. Diffraction of X-Rays, Bragg"s Law, Determination of crystal structure<br>using X-rays Diffraction and its applications. Defects in solids: point, line and planar<br>defects and their effect on properties of materials. Band theory of solids, conductors,<br>semi-conductors and insulators, metals. Fermi Level. Magnetism: dipole moments,<br>paramagnetism, Curie"s law, magnetization and hysteresis, Ferromagnetism and Anti-<br>Ferromagnetism. Ferro electricity and Piezoelectricity. Superconductivity inmaterials. | 15             |
| Electro-Magnetics                                      | Ampere's Law and Displacement Current, Maxwell's Equations in Integral and<br>Differential Forms, Electromagnetic Wave Propagation in Free Space and Conducting<br>Media, Poynting Theorem.                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8              |
|                                                        | Total No. of Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48             |

2. Callister W.D., "Materials Science and Engineering: An Introduction", 6th Edition, John Wiley & Sons Inc., New York2002.

3. J. R. Taylor, C. D. Zafiratos and M. A. Dubson, "Modern Physics for Scientists and Engineers", 2<sup>nd</sup>Pearson.

4. Arthur Beiser, "Concepts of Modern Physics", 6th Ed., TMH, (2009).

5. D. J. Griffith:Electrodynamics.

- 6. Charles Kittel, Introduction to Solid StatePhysics.
- 7. S. O. Pillai, Solid StatePhysics.

# **Course outcomes:**

Student should be able to:

1. Demonstrate interference, diffraction and polarization of light and explain the working principle of Lasers.

2. Student will understand quantum mechanical aspects of physics.

3. Enable to explain the phenomenon of crystal structure and crystallographic, qualitatively description of X-ray diffraction and its general physical properties, as well as possible applications.

4.Students will understand the phenomenon of defects in solids and their physical properties, band theory of solids and classification of energy bands, electric and magnetic properties of solids and able to explain qualitative idea of superconductivity in materials.

5. This will enable the students to learn physical concepts associated with electromagnetic radiation and devices.

# **BASIC ELECTRICAL ENGINEERING**

# **Course objective:**

1. To impart basic knowledge of electrical quantities and provide working knowledge for the analysis of DC and AC circuits.

2. To understand the construction and working principle of DC and ACmachines.

3. To understand the construction and working principle of variousinstruments.

To understand the construction and working principle of 3- phase supplysystem.

|                                                                                                                                                                                        | SE I/EE/D I/CIUJ DASIC ELECTRICAL ENGINEERING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Module Name                                                                                                                                                                            | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No. of<br>Hrs. |
| DC Networks                                                                                                                                                                            | Concepts of linear, nonlinear, active, passive, unilateral and bilateral elements; Ideal<br>and practical voltage & current sources, conversion from one from the other;<br>Kirchhoff's laws, statements; Mesh Analysis; Nodal Analysis; Delta-Star & Star-Delta<br>conversion; Superposition principle; Thevenin's theorem, statement, advantages in case<br>of complex networks; explanation & illustration with examples; Norton's theorem,<br>Maximum powertransfer theorem, Reciprocity Theorem and its application.                                                                                                                                                                                                                           | 10             |
| Single Phase AC<br>Circuits                                                                                                                                                            | Generation of single phase AC voltage and determination of average (mean) and RMS (effective) values of voltage and current with special reference to sinusoidal waveforms;<br>Form factor and peak factor for various waves; Representation of sinusoidal time varying quantities as phasors; concepts of reactance, impedance and their representation in complex forms using j operator; Steady state analysis of series R-L-C circuit & its phasor diagram;<br>Conceptofpower&powerfactorConceptofadmittance,susceptanceinparallelcircuits;<br>Analysis of series parallel circuits & phasor diagrams; Resonance in series and parallel circuits.                                                                                               | 10             |
| Three Phase<br>Circuits                                                                                                                                                                | Generation of 3-phase balanced sinusoidal voltage; star & delta connections; line & phase quantities (current & voltage); Solution of 3-phase star/delta circuits with balanced supply voltage and balanced load; phasor diagram; 3-phase, 4-wire circuits; Measurement of threephase power by two wattmeter method; phasor diagram with balanced load and determination of load power factor from wattmeter readings.                                                                                                                                                                                                                                                                                                                              | 6              |
| Transformers and<br>Rotating Machines                                                                                                                                                  | Transformers: Constructional features and principle of operation, concept of ideal transformer under no load & loaded conditions and its equivalent circuit; Practical transformer rating & its equivalent circuit; Autotransformer – principle of operation & relative advantages & disadvantages; Rotating Machine: construction features (stator, rotor & air gap), conditions for production of steady electromagnetic torque; Three phase Induction motor:constructionalfeaturesandoperation;DCMachines:constructionfeatures,EMFand Torque expression, Classification of DC motors and generators; Stepper motor.                                                                                                                              | 12             |
| Measuring<br>Instruments                                                                                                                                                               | DC PMMC instruments – constructional feature and principle of operation; Moving iron meters construction and principle of operation; Dynamometer type wattmeter; Induction type energy meter construction & principle of operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6              |
|                                                                                                                                                                                        | Total No. of Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44             |
| Kotating Machines         Measuring         Instruments         Text/references book         1. A. E. Fitgerald, D.         2. Rizzoni, "Principle         3. V. Del Toro, "Periodene" | rotor & air gap), conditions for production of steady electromagnetic torque; Three<br>phase Induction<br>motor:constructionalfeaturesandoperation;DCMachines:constructionfeatures,EMFand<br>Torque expression, Classification of DC motors and generators; Stepper motor.<br>DC PMMC instruments – constructional feature and principle of operation; Moving<br>iron meters construction and principle of operation; Dynamometer type wattmeter;<br>Induction type energy meter construction & principle of operation.<br><b>Total No. of Hours</b><br>S<br>E., Higginbotham and A. Grabel, "Basic Electrical Engineering", Mc GrawHill.<br>s and Applications of Electrical Engineering", TMH.<br>printes of Electrical Engineering" PrenticeHall | 6<br>4         |

4.W. H. Hayt & J. E. Kemmerly, "Engineering Circuit Analysis", Mc GrawHill.5. H. Cotton, "Advanced Electrical Technology", WheelerPublishing.

#### **Course outcomes:**

Student should be able to:

Understand the basic electric and magnetic circuits.
 Analyze DC and AC circuits.

3. Interpret the construction and working of different types of electrical machines and instruments.

#### **BASIC ELECTRONICS**

# **Course objective:**

1. To familiarize the students with electronics field.

2. To introduce semiconductor fundamentals, electronic devices, and elementary electronic circuits.

3. To familiarize students with digital logics and gates.

|                                                                                                                                                               | SET/EC/BT/C104 BASIC ELECTRONICS                                                                                                                                                                                                                                                                                                                                                                                              |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Module Name                                                                                                                                                   | Contents                                                                                                                                                                                                                                                                                                                                                                                                                      | No. of<br>Hrs. |
| Semiconductor<br>Diodes                                                                                                                                       | Semiconductor materials- intrinsic and extrinsic types, Ideal Diode as a switch,<br>Terminal characteristics, and equivalent circuit of PN diode: p-n junction under open<br>circuit condition, p-n junction under forward bias and reverse bias conditions, p-n<br>junction in<br>breakdownregion;ZenerdiodeandbasicvoltageregulatorusingZenerdiode;Rectifier<br>Circuits, Clipping and Clamping circuits; LED, Photo Diode. | 10             |
| Bipolar Junction<br>Transistors                                                                                                                               | Physical structure, physical operation and current-voltage characteristics of NPN<br>transistor; Use of Voltage-dependent Current source as a Voltage amplifier; Transistor<br>as an amplifier: Characteristics of CE amplifier; Active region operation of transistor;<br>D.C. analysis of Common Emitter Amplifier: load line analysis; Transistor as a switch:<br>cut-off and saturation modes.                            | 10             |
| Field Effect<br>Transistor                                                                                                                                    | Enhancement-type MOSFET: structure and physical operation, current-voltage characteristics; MOSFET as a Switch, MOSFET as a Voltage-dependent Current sourceand Common Source Amplifier.                                                                                                                                                                                                                                      | 8              |
| Operation<br>Amplifier                                                                                                                                        | Ideal Op-amp; Properties of the ideal Operational Amplifier; op-amp application circuits (assuming ideal op amp): inverting amplifier, non -inverting amplifier, weighted summer, Integrator and differentiator.                                                                                                                                                                                                              | 6              |
| Digital Logic<br>and Gates                                                                                                                                    | Binary, octal, and hexadecimal number systems; Methods of base conversions; Binary, octal, and hexadecimal arithmetic; Representation of signed numbers; Basic logic operations and logic gates; MOSFET Switch Implementation of Logic Gates, e.g., Inverter, NAND, NOR. Basic postulates and fundamental theorems of Boolean algebra.                                                                                        | 8              |
|                                                                                                                                                               | Total No. of Hours                                                                                                                                                                                                                                                                                                                                                                                                            | 42             |
| Text/references boo<br>1. Agarwal Anant,<br>Science & Technolog<br>2. V. Del Toro, "Pr<br>3. Rizzoni, "Princip<br>4. Malvino, Electro<br>5. R. L. Boylestad d | oks<br>Lang, Jeffrey H, "Foundations of Analog and Digital Electronic Circuits",Elsevier<br>gy Books.<br>inciples of Electrical Engineering",PHI.<br>oles and Applications of Electrical Engineering",TMH.<br>nicPrinciples.<br>& L. Nashelsky, "Electronics Devices & Circuit Theory",PHI.                                                                                                                                   |                |

Sedra, Smith, "Microelectronic Circuits", Oxford UniversityPress.

# **Course outcomes:**

Student should be able to:

1. Understand the working and current voltage characteristics of semiconductor devices e.g., dio desand transistor.

2. Perform dc analysis of amplifier circuits.

3.Design basic OP AMP circuits.

4. Understand and use basic digital electronic concepts.

#### FUNDAMENTALS OF INFORMATION TECHNOLOGY

# **Course objective:**

Take on significant positions in various ITwork.
 Collaborate in diverse teamenvironments.

- 3. Contributions in the field of IT.
- 4. Work effectively in the IT field to make a positive contribution to society.

| Module Name                             | Contents                                                                                                                                                                                                                                                                                                                                                                                      | No. of<br>Hrs. |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Introduction                            | Definition of Electronic Computer, Generations, Classification of Computers,<br>Computer Hardware and Basic Computer Organization: CPU- ALU, CU; RAM/ROM,<br>Various I/O devices, Peripherals, Storage Media.                                                                                                                                                                                 | 4              |
| Computer<br>Languages                   | Binary, Hexadecimal Number System; Basic Binary Logic Operations; Binary<br>Addition and Subtraction; Generation of Languages, Assembly Language, High level<br>language; Translators, Interpreters, Compilers, Compilers; Flow Charts, Dataflow<br>Diagram.                                                                                                                                  | 6              |
| OS & Office                             | Software- System and Application Software; Elementary Concepts in Operating System; Textual Vs GUI, Introduction to DOS, MS Windows, UNIX/Linux.                                                                                                                                                                                                                                              | 4              |
| Computer<br>Networks                    | Elements of Communication system; Brief Introduction to Computer Networks-<br>Introduction of LAN and WAN. Network Topologies, Client-server Architecture, IoT,<br>Cloud Computing.                                                                                                                                                                                                           | 6              |
| Internet                                | Internet & World Wide Web, Hypertext Markup Language, DHTML, Python, WWW,<br>Gopher, FTP, Telnet, Web Browsers, Net Surfing, Search Engines, Email;<br>Introduction to Web Development, Static and Dynamic Pages.                                                                                                                                                                             | 6              |
| IT Application and<br>Multi media       | Basic Awareness of NICNET and ERNET; E Commerce, E governance; Brief<br>Introduction to Different Formats of Image, Audio, Video.                                                                                                                                                                                                                                                             | 6              |
| Information<br>Concepts &<br>Processing | Definitions of Information, Need of information, quality of information, value of<br>information, concept of information, Entropy category and Level of information in<br>Business<br>Organization,DataConceptsandDataProcessing,DataScience,DataRepresentation,<br>Application of IT to E-commerce, Electronic Governance, Multimedia, Entertainment,<br>Introduction to Information System. | 8              |
| · · · · · · · · · · · · · · · · · · ·   | Total No. of Hours                                                                                                                                                                                                                                                                                                                                                                            | 40             |

5. Peter Nortans "Introduction to Computers", TMH.

# **Course outcomes:**

Student should be able to:

- 1. Develop information technology solutions by evaluating user requirements in the systems development environment.
- 2. Apply knowledge of IT requirements for technology solutions in cutting edgesapplications.
- 3. Analyze a problem and identify and define the computing requirements for the appropriate solutions.
- 4. Create, select and apply appropriate techniques, resources, and modern engineering and ITtools.

| PHYSICS | LAB |
|---------|-----|
|---------|-----|

| SET/SH/BT/C107 PHYSICS LAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                     |             |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| S. No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Experiments                                                                                                                                         | No. of Hrs. |  |  |  |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | To determine refractive index of glass and liquid using spectrometer.                                                                               | 1x2         |  |  |  |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | To determine the wavelength of spectral lines using plane diffraction grating (Use Hg Source).                                                      | 1x2         |  |  |  |
| 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | To determine the wavelength of sodium light by Newton's Ring method.                                                                                | 1x2         |  |  |  |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | To measure an accessible (Horizontal and vertical) height using sextant.                                                                            | 1x2         |  |  |  |
| 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Determination of wavelength of He-Ne laser using single slit /N slit diffraction pattern.                                                           | 1x2         |  |  |  |
| 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | To study the photoelectric effect and determine the value of Planck's constant.                                                                     | 1x2         |  |  |  |
| 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | To determine the heating efficiency of an electric kettle with varying voltage.                                                                     | 1x2         |  |  |  |
| 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | To Determine the wavelength of the semiconductor diode laser.                                                                                       | 1x2         |  |  |  |
| 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Measurement of forward/reverse saturation current in p-n-junction diode at various<br>Temperatures and to find the approximate value of energy gap. | 1x2         |  |  |  |
| 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | To study the Hall effect and determine Hall coefficient, carrier density and mobility of a given semiconductor material.                            | 1x2         |  |  |  |
| 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | To draw hysteresis curve of a given sample of ferromagnetic material and from this to determine magnetic susceptibility.                            | 1x2         |  |  |  |
| 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measurement of e/m of electron e/m- Thomson's Experiment.                                                                                           | 1x2         |  |  |  |
| 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | To verify Ohm's law.                                                                                                                                | 1x2         |  |  |  |
| 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conversion of Galvanometer into Voltmeter and Ammeter.                                                                                              | 1x2         |  |  |  |
| 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | To determine the unknown resistance by a post office box.                                                                                           | 1x2         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total No. of Hours                                                                                                                                  | 30          |  |  |  |
| 1.       Practical Physics, C. L. Arora, S. Chand & Co.         2.       Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt.Lt         3.       Advanced Practical Physics for students, B.L. Flint & H.T. Worsnop, 1971, Asia PublishingHou         4.       Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted1985, Heinemann EducationalPublishers.         5.       A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab |                                                                                                                                                     |             |  |  |  |

# ENGINEERING GRAPHICS AND WORKSHOP PRACTICE

|                                                                         | SET/ME/BT/C108. ENGINEERING GRAPHICS AND WORKSHOP PRACTICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |  |  |  |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|
| Module Name                                                             | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No.<br>of<br>Hrs. |  |  |  |
| Introduction to<br>Engineering<br>Graphics &<br>Projection of<br>Points | Drawing instruments and their use, Different types of lines, Lettering & dimensioning<br>Familiarization with current Indian Standard Code of Practice for Engineering Drawing.<br>Scales, Plain scales, Diagonal scales, Vernier scales. First angle and third angle projections<br>Projection of points in different coordinates, Projections of lines inclined to one of the<br>reference planes.                                                                                                                                                                 | 08                |  |  |  |
| Projections of<br>lines and planes                                      | Projections of lines inclined to both the planes, True lengths of the lines and their angles of inclination with the reference planes, Traces of lines. Projection of plane lamina of geometric shapes inclined to one of the reference planes, inclined to both the planes, Traces of planes. Projections on auxiliary planes.                                                                                                                                                                                                                                      | 08                |  |  |  |
| Projections of<br>polyhedral and<br>solids                              | Projections of polyhedral and solids of revolution, projection of solids with axis parallel to one of the planes and parallel or perpendicular to the other plane, Projections with the axis inclined to one of the planes.                                                                                                                                                                                                                                                                                                                                          | 08                |  |  |  |
| Orthographic<br>Projection                                              | Concept of orthographic projection, Rules of Drawing orthographic projection, Conversion of pictorial views into orthographic projection, Drawing of orthographic projection of Machine components.                                                                                                                                                                                                                                                                                                                                                                  | 08                |  |  |  |
| Carpentry, Fitting<br>and Black smithy                                  | Minimum two experiments from Carpentry, Fitting and Black smithy. And Development of jobs carried out and soldering, Black Smithy, House Wiring, Foundry (Molding only), Plumbing.                                                                                                                                                                                                                                                                                                                                                                                   | 08                |  |  |  |
| Welding &<br>Machining                                                  | Practice of minimum two experiments of welding joints. Overview of Lathe, Shaper,<br>Milling and Drilling machine. Perform one job on each machine.                                                                                                                                                                                                                                                                                                                                                                                                                  | 08                |  |  |  |
|                                                                         | Total No. of Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 48                |  |  |  |
| Textbooks                                                               | <ol> <li>Bhatt N. D, Elementary Engineering Drawing, Charotar Publishing House, Anand,2002.</li> <li>Elements of Workshop Technology Vol-1 by HazraChaudhary.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                             |                   |  |  |  |
| References                                                              | <ol> <li>Preinents of Workshop Technology Vol-1 by HaziaChaudhary.</li> <li>Narayana K L &amp; Kannaiah P, Engineering Graphics, Tata McGraw Hill, New Delhi,1992.</li> <li>Luzadder W J, Fundamentals of Engineering Drawing, Prentice Hall of India, New Delhi,2001.</li> <li>Thomas E French &amp; Charkes J V, Engineering Drawing &amp; Graphing Technology, McGraw HillBook Co, New York,1993.</li> <li>Venugopal K, Engineering Drawing &amp; Graphics, New Age International Pvt. Ltd., New Delhi,1994.</li> <li>Workshop Technology, Paghubanshi</li> </ol> |                   |  |  |  |

# UNDERSTANDING AND CONNECTING WITH ENVIRONMENT

| VAC-1 UNDERSTANDING AND CONNECTING WITH ENVIRONMENT   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        |  |  |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|
| Module Name                                           | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No. of<br>Hrs.                                                                         |  |  |
| Understanding of<br>Environment                       | <ol> <li>Definition, scope and importance of Environment, Multidisciplinary nature of<br/>Environmental Sciences.</li> <li>Understanding of Ecology and Ecosystems, Ecological Succession and</li> <li>Ecosystem Services.</li> <li>Energy flow in an Ecosystem; Food Chain, Food Weband, Ecological Pyramids.</li> <li>Human interaction with its Environment.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                      |  |  |
| Natural Resources<br>and Biodiversity<br>Conservation | <ol> <li>Basic concept, types and values of Natural Resources.</li> <li>Resource Consumption, Restoration and Conservation Practices and Sustainable<br/>Development.</li> <li>Concept, values and distribution of Biodiversity and its linkages with culture, health and<br/>people.</li> <li>Threats to Biodiversity and Biodiversity conservation.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                      |  |  |
| Global<br>Environmental<br>issues                     | <ol> <li>Environmental Pollution and Waste Management.</li> <li>Climate Change, Green House Effect and Global Warming.</li> <li>Radiations, Nuclear and Technological Hazards.</li> <li>Population Growth, Disaster, Pandemic and Human Health Risks.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                      |  |  |
| Environment and<br>Society                            | <ol> <li>Origin and Evolution of Human; Social, Cultural and Religious Structure and values of<br/>Environment.</li> <li>Traditional Wisdom, Indigenous/traditional Communities and Livelihood Security 4.3<br/>Industrial Society, Modernization and Adaptations to Natural and Anthropogenic<br/>variations.</li> <li>Environmental Movements, Environmental Ethics and Legislations.</li> <li>Connecting human society with conservation and management of water, energy,<br/>biodiversity, culture and heritage and waste management.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                      |  |  |
|                                                       | Total No. of Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                     |  |  |
| Text Book/<br>References                              | <ol> <li>WorldCommissiononEnvironmentandDevelopment.1987.Our Common Future.<br/>University Press.</li> <li>Ramakrishnan, P.S., Purohit, A.N., Saxena, K.G., Rao, K.S., Maikhuri, R. K. 1996 Con.<br/>and Management of Biological Resources in Himalaya. Oxford &amp; IBH Publishing Co.<br/>New Delhi.</li> <li>Erach Bharucha, Environmental Studies. 2004, UGC and BVIEER Pune.</li> <li>Khanduri, I., Pandey, M., Maikhuri, R. 2006. Environment and Ecology, Tran<br/>Publication Srinagar Garhwal.</li> <li>Pepper,I.L.,Gerba,C.P.&amp;Brusseau,M.L.2011.EnvironmentalandPollutionScience.Acader<br/>Paryavaran Mitra. Explore, Discover, Think, Act. 2011. Centre for Environmental Educa<br/>R. Sodhi,N.S.,Gibson,L.&amp;Raven,P.H.(eds).2013.ConservationBiology:Voicesfromt<br/>heTropics.JohnWiley&amp;Sons.</li> <li>Singh,J.S.,Singh,S.P.andGupta,S.R.2014.Ecology,Environmental Science and<br/>Conservation.Anamaya Publishers.</li> <li>Gopal. B., Bhardwaj, N. Elements of Ecology. Vikas Publication House New Delhi</li> </ol> | Oxford<br>servation<br>Pvt. Ltd.<br>as media<br>nicPress.<br>ation.<br><i>recourse</i> |  |  |

| SET/ME/SC/C1                  | 10                                                                                                                                                                                                                                                                             |         |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                               | Machining Practice Lab-I (Skill Enhancement G                                                                                                                                                                                                                                  | Course) |
| Course Objective:             | 1. To make the student learn a Main parts machine and their functions                                                                                                                                                                                                          | •S:     |
|                               | 2. To learn various operations that can perform on the Machine.                                                                                                                                                                                                                |         |
|                               | 3. To learn how to shape raw materials into useful products.                                                                                                                                                                                                                   |         |
| Course Outcome:               | <ol> <li>After Completion of this course the student would be able to know a<br/>functions of machine parts.</li> </ol>                                                                                                                                                        | about   |
|                               | 2. Able to shape raw materials according to design of the components.                                                                                                                                                                                                          |         |
| Module Name                   | Content                                                                                                                                                                                                                                                                        | No. of  |
| and all stores and all stores |                                                                                                                                                                                                                                                                                | Hrs     |
| Module I                      | Working and principle of Lathe machine, Important parts and Functions.<br>Tools used in making job, Clamping of jobs using various work holding<br>devices, Limitations of work holding devices. Functions of Lathe machine<br>attachments and accessories, Cantering of jobs. | 10      |
| Module II                     | Practice on Lathe machine for making components as per given design<br>related to operations:-Plain turning, Step turning, Taper turning, Knurling,<br>Drilling, Bring, Reaming and Threading                                                                                  | 10      |
| Module III                    | Function and working of Shaper Machine. Work holding device working,<br>Tooling in Shaper, Practice on Shaper machine for making components as<br>per given design related to operations.                                                                                      | 10      |
|                               | Total Hours                                                                                                                                                                                                                                                                    | 30      |

# SEMESTER II

| S. No. | Category                                      | Course Code    | Course Title                                | L  | Т | Р | Contact<br>Hrs./Week | Credits |
|--------|-----------------------------------------------|----------------|---------------------------------------------|----|---|---|----------------------|---------|
| 1.     | Basic Science/                                | SET/SH/BT/C201 | Mathematics II                              | 3  | 1 | - | 4                    | 4       |
| 2.     | Multidisciplinary                             | SET/SH/BT/C203 | Chemistry                                   | 3  | 1 | - | 4                    | 4       |
| 3.     | C D .                                         | SET/ME/BT/C202 | Basic Mechanical Engineering                | 3  | 1 | - | 4                    | 4       |
| 4.     | Engineering                                   | SET/ME/BT/C204 | Engineering Mechanics                       | 3  | 1 | - | 4                    | 4       |
| 5.     | Subjects                                      | SET/CS/BT/C205 | C Programming                               | 3  | 1 | - | 4                    | 4       |
| 6.     | Core/ Basic                                   | SET/SH/BT/C208 | Chemistry Lab                               | -  | - | 1 | 2                    | 1       |
| 7.     | Subjects Labs                                 | SET/CS/BT/C209 | C Programming Lab                           | -  | - | 1 | 2                    | 1       |
| 8.     | Life Skills and<br>Personality<br>Development | VAC-2          | *Life Skills and Personality<br>Development | 2  | - | - | 2                    | 2       |
| 9.     | Skill Course                                  | SET/EC/BT/S206 | Basic Electronics Lab                       | -  | - | 1 | 4                    | 2       |
|        |                                               | Total          |                                             | 17 | 5 | 3 | 30                   | 26      |

\*Common syllabus for all UG courses of the university. Exit Option with Certificate in B. Tech. (Mechanical Engineering).

# **MATHEMATICS-II**

| SET/SH/BT/C201MATHEMATICS-II  |                                                                                                                                                                                                                                                                                                                                           |                |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Module Name                   | Content                                                                                                                                                                                                                                                                                                                                   | No. of<br>Hrs. |  |
| Multiple<br>Integral          | Evaluation of definite integral; double and triple integrals; change of order of integration,<br>Change of variables, application to area, volume, centre of gravity, moment of inertia and<br>productofinertia.GammaandBetafunctions,Dirichlet <sup>**</sup> sintegralanditsapplication.                                                 | 12             |  |
| Fourier Series                | Periodic functions, Fourier series of functions with period 2n, change of interval, half range sine and cosine series.                                                                                                                                                                                                                    | 6              |  |
| Integral<br>Transform         | Laplace transforms, existence theorem, Laplace transform derivatives, inverse Laplace transform, application to solve linear differential equations, unit step function, Dirac delta function, Laplace transforms of periodic functions. Application of Laplace transforms. Definitions of Fourier transform and its simple applications. | 14             |  |
| Probability and<br>Statistics | Random variables. Uniform, normal, exponential, Poisson and binomial distributions. Mean, median, mode and standard deviation, Correlation and regression, Conditional probability and Bayes theorem.                                                                                                                                     | 12             |  |
| Total No. of Hrs.             |                                                                                                                                                                                                                                                                                                                                           |                |  |
| Textbooks                     | <ol> <li>R. K. Jain and S. R. K. Iyengar "Advanced Engineering Mathematics", NarosaPublications.</li> <li>B. S. Grewal, "Higher Engineering Mathematics", KhannaPublishers.</li> <li>H. K. Das, "Advanced Engineering Mathematics", SChand.</li> <li>Erwin Kreyszig, "Advanced EngineeringMathematics".</li> </ol>                        |                |  |

# CHEMISTRY

# **Course objectives:**

1. Apply the electrochemical principles in batteries, understand the fundamentals of corrosion.

2. Analysis of water for its various parameters and its significance in industrial and domesticApplications.

3. Analyze microscopic chemistry in terms of atomic, molecular orbitals and Intermolecularforces.

4. Analysis of major chemical reactions that are used in the synthesis ofmolecules.

5. Understand the chemistry of various fuels and their combustion.

|                                            | SET/SH/BT/C203. CHEMISTRY                                                                                                                                                                                                                                                                                                                                                        |                |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Module Name                                | Content                                                                                                                                                                                                                                                                                                                                                                          | No. of<br>Hrs. |
| Advanced<br>Theory of<br>Chemical Bonding  | Valence bond and molecular orbital theory. Structure of NH <sub>3</sub> , H <sub>2</sub> O, SO <sub>3</sub> , PCl <sub>5</sub> , XeO <sub>2</sub> molecules. Types of linkages, Hybridization, Hydrogen bonding, Metallic bonding.                                                                                                                                               | 4              |
| Equilibrium on<br>Reactivity               | Bronsted and Lewis Acids, pH, pka, pkb scale, buffer solution.                                                                                                                                                                                                                                                                                                                   | 4              |
| Polymers                                   | Structures of the following polymers, viz, Natural and synthetic rubbers, Polyamide and<br>Polyester fibres, polymethylmethacrylate, poly acrylonitrile and polystyrene. A brief account<br>of conducting polymers (polypyrrole & polytiphene) & their applications.                                                                                                             | 3              |
| Complex<br>Compounds                       | Introduction, Valence bond and crystal field theory.                                                                                                                                                                                                                                                                                                                             | 4              |
| Chemical<br>Kinetics &<br>Catalysis        | Order of reactions, Parallel and reversible reactions, Catalysis- homogeneous and heterogeneous catalysis, Characteristics of catalytic reactions, catalytic promoters and poisons, auto catalysis and negative catalysis. Activation energy of catalysis, intermediate compound formation theory and adsorption theory.                                                         | 3              |
| Atmospheric<br>Chemistry& Air<br>Pollution | Environment and ecology, environmental segments, structure and composition of atmosphere, radiation balance of earth and Green House Effect, formation and depletion of Ozone layer, chemical and photochemical reactions of various species in atmosphere, air pollution-sources, reactions and sinks for pollutants, acid rains and smog formation. Pollution control methods. | 5              |
| Corrosion &<br>Lubricants                  | Introduction, causes of corrosion, theories of corrosion- direct chemical attack, electrochemical theory of corrosion, factors influencing corrosion, corrosion inhibitors, passivity, types of corrosions, protection from corrosion and protective coatings. Theory, classification and mechanism of lubrication.                                                              | 5              |
| Waterand Waste<br>Water Chemistry          | Introduction, hardness of water, characteristics imparted by impurities, analysis of contaminants, treatment of water by Zeolite, L-S process, boiler feed water, waste water treatment.                                                                                                                                                                                         | 6              |
| Fuels &<br>Combustion                      | Classification of fuels, non-conventional energy, biogas, biomass and solar energy, calorific value – gross and net, characteristics of good fuel, determination of calorific value, solid fuels, analysis of coal, liquid fuels.                                                                                                                                                | 5              |
| Stereochemistry<br>oforganic-<br>compounds | Mechanism of chemical reaction, Beckman, Hoffman, Reimer Tiemann, Cunnizzaro, Diels-<br>Alder and Skraup synthesis.                                                                                                                                                                                                                                                              | 3              |
| •                                          | Total No. of Hours                                                                                                                                                                                                                                                                                                                                                               | 42             |
| Textbooks                                  | <ol> <li>Jain, Jain, "EngineeringChemistry".</li> <li>Sharma, Kumar, "EngineeringChemistry".</li> </ol>                                                                                                                                                                                                                                                                          |                |
| References                                 | <ol> <li>R. T. Morrison and R N Boyd, "Organic Chemistry", 6th Edition, Prentice Hall, NewDelhi.</li> <li>J. D. Lee, "Concise Inorganic Chemistry", Chapman &amp; Hall.</li> <li>W. L. Jolly, "Modern Inorganic Chemistry", McGraw-Hill.</li> </ol>                                                                                                                              |                |

Course outcomes:

Student should be able to:

1. Describe and understand the operation of electrochemical systems for the production of electricenergy, i.e. batteries.

2. Explain the mode by which potable water is produced through the processes of screening, micro Straining, aeration, coagulation and flocculation, sedimentation, flotation, filtration and disinfection.

3. Recognize that molecular orbital theory is a method used by chemists to determine the energy of the electron in a molecule as well as itsgeometry.

4. Demonstrate an ability to design, implement, and evaluate the results of experimentation using standard scientific methodologies such as hypothesis formulation and testing.

5. Understand and analyze the combustion mechanisms of variousfuels.

### **BASIC MECHANICAL ENGINEERING**

#### **Course Objectives:**

- 1. To use mechanical principles to solve real-world engineeringissues.
- To identify appropriate structural system for studying a given problem and isolate it from itsenvironment.
   Develop a simple mathematical model for an engineering problem and perform a staticanalysis.
- 4. To carry out kinematics and Kinetics analysis for practices and system of particles.

| SET/ME/BT/C202 BASIC MECHANICAL ENGINEERING |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |  |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
| Module Name                                 | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No. of<br>Hrs. |  |  |
| Fundamental<br>concept of<br>thermodynamics | Definition of thermodynamics, System, Surrounding and Universe, Phase, Concept of continuum, Macroscopic & microscopic point of view. Thermodynamic equilibrium, Property, State, Path, Process, Cyclic and non-cyclic processes, Reversible and irreversible processes, Quasi static process, Energy and its forms, Enthalpy, Zeroth law, first law, second law and third law of thermodynamics, Steady flow energy equation, Limitations of first law of thermodynamics, Essence of second law, Thermal reservoir, Heat engines. COP of heat pump and refrigerator, Carnot cycle, Carnot theorem, Clausius inequality, Concept of entropy.                                                                                                                          | 8              |  |  |
| Properties of<br>gases and steam            | Boyle's law, Charles's law, Gay-Lussac''s law, Avogadro''s law, Combined gas law, Gas constant, Relation between c <sub>p</sub> and c <sub>v</sub> , Various non-flow processes like constant volume process, constant pressure process, Isothermal process, Adiabatic process, Polytropic process. Steam formation, Enthalpy, Specific volume, Internal energy and dryness fraction of steams, steam calorimeters.                                                                                                                                                                                                                                                                                                                                                   | 5              |  |  |
| Thermodynamic<br>Cycle                      | Rankine cycle, Actual vapour cycle processes, Comparison of Rankine and Carnot cycles, Air standard cycles - Otto, Diesel, dual and Brayton cycles, Vapour compression refrigeration cycles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8              |  |  |
| Introduction to<br>Mechanics of<br>Solid    | Normal and shear Stress, strain, Hookes" law, Poisson"s ratio, elastic constants and their relationship, stress-strain diagram for ductile and brittle materials, factor of safety. Basic Numerical problems, temperature stresses, shear stress, complementary shear stress, shear strain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8              |  |  |
| Compound<br>Stresses and<br>Strains         | State of stress at a point, oblique stress, simple tension, pure shear, general two dimensional stress system, principal planes, principal stresses and strains, maximum shear stress.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8              |  |  |
| Bending Stress<br>and Torsion               | Pure bending, moment of inertia, section modulus, bending stresses, combined bending and direct stress, beam of uniform strength, middle third and middle quarter rules for rectangular and circular sections, Circular shafts, torsional shear stress, strain energy in torsion, shafts under varying torque, compound shafts, combined bending andtwisting.                                                                                                                                                                                                                                                                                                                                                                                                         | 8              |  |  |
|                                             | Total No. of Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45             |  |  |
| Textbooks                                   | <ol> <li>R S Khurmi, "EngineeringMechanics".</li> <li>P K Nag "EngineeringThermodynamics".</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |  |  |
| References                                  | <ol> <li>Van Wylen G.J. &amp; Sonnlog R.E., Fundamentals of classical thermodynamics, John Wiley &amp; Solnc.NY.</li> <li>Wark Wenneth, Thermodynamics, (2nd edition), Mc Graw Hill book Co.NY.</li> <li>Holman, J.P., Thermodynamics, Mc Graw Hill book Co.NY.</li> <li>Yadav R., Thermodynamics and Heat Engines, Vol I &amp; II (Sl Edition) Central Publishing HouseAllahabad.</li> <li>Yadav R., Steam &amp; GasTurbines.</li> <li>Kshitish Chandra Pal, Heat Power, Orient Longman Limited, 17, Chittranjan Avenue, Calcutta.</li> <li>S. Rao, B.B. Parulekar, "Energy Technology", Khanna Pub., NewDelhi.</li> <li>G. H. Ryder, "Strength ofMaterials".</li> <li>F. L. Singer, "Strength ofMaterials".</li> <li>Timoshenko, "Strength ofMaterials".</li> </ol> | ons,           |  |  |

#### **Course Outcomes:**

Student should be able to:

- Apply and demonstrate the concept of mechanics to practical engineeringproblems.
   Determine the properties of planes andsolids.
   Apply the basic concept of dynamics to practical problems.

# **ENGINEERING MECHANICS**

# **Course Objectives:**

1. To understand distributed force systems, centroid/ center of gravity and method of finding centroidsof composite figures and bodies.

2. To understand the moment of inertia and method of finding moment of inertia of areas andbodies.

3. To understand types of frames and analyze for the forces in the members of the truss by method of joints and method ofsections.

4. To understand dynamics of aparticle.

5. To interpret the simple given dynamic problems and solve them for positions, velocities and accelerations, etc.

6. To understand the kinetics of the rigid bodies and solve simple problems using work-energymethod.

|                                                  | SET/ME/BT/C204. ENGINEERING MECHANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Module Name                                      | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No. of<br>Hrs. |
| Force System                                     | Introduction: Force system, dimensions and units in mechanics, laws of mechanics, vector algebra, addition and subtraction of forces, cross and dot products of vectors, moment of a force about a point and axis, couple and couple moment, transfer of a force to a parallel position, resultant of a force system using vector method, Problems involving vector application Equilibrium: Static and dynamic equilibrium, static in determinacy, general equations of equilibrium, Varingnon''stheorem, Lami''stheorem, equilibriumofbodiesunderaforcesystem, Problems.                                                                                                                                                                                                 | 8              |
| Trusses And<br>Frames                            | Truss and Frames: Truss, classification of truss, assumptions in truss analysis, perfect truss,<br>Analysis of perfect plane truss using method of joints and method of sections, Problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8              |
| Centre Of<br>Gravity And<br>Moment Of<br>Inertia | Centroid, Centre of mass and Centre of gravity, Determination of centroid, centre of mass and centre of gravity by integration method of regular and composite figures and solid objects, Problems, Moment of Inertia: Area moment of inertia, mass moment of inertia, parallel axis and perpendicular axis theorems, radius of gyration, polar moment of inertia, product of inertia, principle axis, problem based on composite figures and solid objects.                                                                                                                                                                                                                                                                                                               | 10             |
| Friction and<br>Virtual Work                     | Friction-characteristics of dry friction, problems involving friction of ladder, wedges and<br>Connected bodies. Definition of virtual work, principle of virtual work for a system of<br>connected bodies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7              |
| Kinematics And<br>Dynamics                       | Kinematics: Concept of rigid body, velocity and acceleration, relative velocity, translation and rotation of rigid bodies, equations of motion for translation and rotation, problems. Particle Dynamics: Energy methods and momentum methods, Newton''s laws, work energy equation for a system of particles, linear and angular momentum equations, projectile motion, problem.                                                                                                                                                                                                                                                                                                                                                                                          | 12             |
|                                                  | Total No. of Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45             |
| Textbooks                                        | <ol> <li>R S. Khurmi, "Engineering Mechanics".</li> <li>P. K. Nag "EngineeringThermodynamics".</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| References                                       | <ol> <li>Van Wylen G.J. &amp; Sonnlog R.E.: Fundamentals of classical thermodynamics, John Wiley &amp; S<br/>Inc.NY.</li> <li>Wark Kenneth: Thermodynamics (2nd edition), Mc Graw Hill book Co.NY.</li> <li>Holman, J.P.: Thermodynamics, MC Graw Hill book Co.NY.</li> <li>Yadav R.: Thermodynamics and Heat Engines, Vol I &amp; II (Sl Edition) Central Publishing<br/>HouseAllahabad.</li> <li>Yadav R.: Steam &amp; GasTurbines.</li> <li>Kshitish Chandra Pal: Heat Power, Orient Longman Limited, 17, Chittranjan Avenue,Calcutta</li> <li>S. Rao, B.B. Parulekar, "Energy Technology", Khanna Pub., NewDelhi.</li> <li>G. H. Ryder: "Strength ofMaterials".</li> <li>F. L. Singer: "Strength ofMaterials".</li> <li>Timoshenko: "Strength ofMaterials".</li> </ol> | Sons,          |

#### **Course Outcomes:**

Student should be able to:

1. Identify the significance of centroid/ center of gravity and find centroids of composite figures andbodies.

2. Understand the moment of inertia and method of finding moment of inertia of areas andbodies.

3. Identifythetypeofframeandanalyzefortheforcesinthemembersofthetruss(frame)bymethodofjoints and method ofsections.

4. Understand dynamics of aparticle.

### **C PROGRAMMING**

# **Course Objective:**

The course is designed to provide complete knowledge of programming in C language. Students will be able to develop logics, which will help them to create programs and applications in C. Also, by learning the basic programming concepts in C help them to learn any other programming language in future.

|                              | SET/CS/BT/C205. C PROGRAMMING                                                                                                                                                                                                                                                                                                                     |                |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Module Name                  | Content                                                                                                                                                                                                                                                                                                                                           | No. of<br>Hrs. |
| Introduction                 | Introduction, The C character set, Constants, Variables, Identifiers, Keywords, Data types, Declarations, The First C Program, Compilation and Execution.                                                                                                                                                                                         | 6              |
| Operators and<br>Expressions | Arithmetic, Relational, Equality, Logical, Unary, Conditional, Bitwise, Assignment, Comma and Size of operator. Type Conversion and Typecasting.                                                                                                                                                                                                  | 6              |
| Control<br>Statements        | If, if-else, while, do-while, for loop, nested loops, switch, break, continue and goto statements.                                                                                                                                                                                                                                                | 5              |
| Functions &<br>Pointers      | Defining and accessing functions, Function prototype, Passing arguments, Recursion, Use of library functions. Introduction to pointers, Declarations, Passing to a function, Operations on pointers, Dynamic memory allocation, Array of pointers.                                                                                                | 11             |
| Arrays                       | Single and Multi-dimensional arrays, Row major and Column major form of an array, Character strings and arrays.                                                                                                                                                                                                                                   | 4              |
| Storage classes              | Automatic, Register, Static and External storage class.                                                                                                                                                                                                                                                                                           | 4              |
| Structures and<br>Unions     | Basics of structures, Structures and functions, Arrays of Structures, Pointers to structures, Self-referential structures, Unions.                                                                                                                                                                                                                | 4              |
| File Input/output            | Opening a File, Reading from a file, closing the file, Writing to a file.                                                                                                                                                                                                                                                                         | 4              |
|                              | Total No. of Hours                                                                                                                                                                                                                                                                                                                                | 44             |
| Textbooks                    | 1. E. Balagurusamy, "Programming in ANSI C".                                                                                                                                                                                                                                                                                                      | I              |
| References                   | <ol> <li>Byron S. Gottfried, "Programming WithC".</li> <li>Yashwant Kanitker, "LET USC".</li> <li>B. W. Kernighan and D. M. Ritchie, "The C ProgrammingLanguage".</li> <li>B. W. Kernighan, "The Practice of Programming", Addison-Wesley,1999.</li> <li>C. L. Tondo and S. E. Gimpel, "The C Answer Book", (2/e), Prentice Hall,1988.</li> </ol> |                |
| Vouvea Outean                |                                                                                                                                                                                                                                                                                                                                                   |                |

Course Outcomes:

Student should be able to:

- 1. Develop programs in C programminglanguage.
- 2. Analyze the problem and find appropriatesolution.
- 3. Evaluate the correctness of the developed solution.

#### CHEMISTRY LAB

| SET/SH/BT/C208. CHEMISTRY LAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No. of Hrs. |
| <ol> <li>To determine the percentage of available chlorine in the supplied sample of bleachingpowder.</li> <li>To determine the ferrous content in the supplied sample of iron ore by titrimetric analysis againststandard K2Cr2O7 solution using K3Fe (CN)6 as external indicator.</li> <li>To determine the chloride content in supplied water sample using Mohr"smethod.</li> <li>To determine the constituents and amount of alkalinity of the supplied watersample.</li> <li>To determine the temporary and permanent hardness of water sample bycomplexometry.</li> <li>To find chemical oxygen demand of a waste water sample using PotassiumDichromate.</li> <li>To determine iron concentration in the sample of water by Spectrophotometricmethod.</li> <li>To determine the molecular weight of a polystyrene sample by using viscometricmethod.</li> <li>To determine pH of a solution by using digital pH meter and titration of such a solution pHmetrically.</li> <li>Analysis of a coal sample by proximate analysismethod.</li> </ol> | 3x10        |
| Total No. of Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30          |

# C PROGRAMMING LAB

| SET/CS/BT/C209. C PROGRAMMING LAB                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                         |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Course Objective                                                                                                                                                                                                                                               | <ol> <li>To make the student learn a programminglanguage.</li> <li>To learn problem solvingtechniques.</li> <li>To teach the student to write programs in C and to solve theproblems.</li> </ol>                                                                                                                                                                        |             |
| Course Outcomes                                                                                                                                                                                                                                                | <ol> <li>course the student would be able to:</li> <li>Read, understand and trace the execution of programs written in Clanguage.</li> <li>Write the C code for a givenalgorithm.</li> <li>Implement Programs with pointers and arrays, perform pointer arithmetic, and use thepree</li> <li>Write programs that perform operations using derived datatypes.</li> </ol> | -processor. |
| Content                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                         |             |
| This lab shall have minimum 25 programs in C. There shall be minimum two programs per module as taught in theory. Programming shall follow logic/algorithm and flowchart wherever applicable. Exercises shall also enhance analytical and debugging abilities. |                                                                                                                                                                                                                                                                                                                                                                         | 2x16        |
|                                                                                                                                                                                                                                                                | Total No. of Hours                                                                                                                                                                                                                                                                                                                                                      | 32          |

# LIFE SKILLS AND PERSONALITY DEVELOPMENT

# **Course Objectives:**

1. The course intends to develop talent, facilitate employability enabling the incumbent to excel and sustain in a highly competitive world of business.

2. The programme aims to bring about personality development with regard to the different behavioral dimensions that have far reaching significance in the direction of organizational effectiveness.

3. To make students know about self-awareness, life skills, soft skills, need for personal development etc.

| VAC-2 LIFE SKILLS AND PERSONALITY DEVELOPMENT           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |  |  |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|
| Module Name                                             | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No. of<br>Hrs.   |  |  |
| Career and<br>Professional Skills                       | Career and Professional Skills: Listening Skills, Reading Skills, Writing Skills Effective<br>Resume preparation, Interview Skills, Group Discussion Skills, Exploring Career<br>Opportunities, Psychometric Analysis and Mock Interview Sessions Team Skills: Cognitive<br>and Non-Cognitive Skills, Presentation Skills, Trust and Collaboration, Listening as a Team<br>Skill, Brainstorming, Social and Cultural Etiquettes Digital Skills: Computer skills, Digital<br>Literacy and Social Media, Digital Ethics and Cyber Security. | 06               |  |  |
| Attitude and<br>Motivation                              | Attitude: Concept, Significance, Factors affecting attitudes, Positive attitude - Advantages,<br>Negative attitude- Disadvantages, Ways to develop positive attitude, Difference between<br>personalities having positive and negative attitude. Motivation: Concept, Significance,<br>Internal and external motives - Importance of self motivation- Factors leading to de-<br>motivation, Maslow's Need Hierarchy Theory of Motivation                                                                                                  | 06               |  |  |
| Stress-management<br>and Development<br>of Capabilities | Development of will power, imagination through yogic lifestyle- Development of thinking,<br>emotion control and discipline of mind through Pranayama- Improvement of memory<br>through meditation-Stress: meaning, causes, and effects of stress in life. Management- Stress:<br>psycho-physical mechanism, management of stress through Yoga.                                                                                                                                                                                            | 06               |  |  |
| Other Aspects of<br>personality<br>Development          | Body language - Problem-solving - Conflict and Stress Management - Decision-making<br>skills -Leadership and qualities of a successful leader - Character-building -Team-work -<br>Time management -Work ethics – Good manners and etiquette.                                                                                                                                                                                                                                                                                             | 06               |  |  |
| Health and<br>Hygiene                                   | Health and Hygiene- Meaning and significance for Healthy Life- 3. Exercise And Nutrition and Immunity. Obesity- Meaning, Types and its Hazards. – Physical Fitness and Health Related Physical Fitness- Concept, Components and Tests- Adventure Sports.                                                                                                                                                                                                                                                                                  | 06               |  |  |
|                                                         | Total No. of Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |  |  |
| Text Books/<br>References                               | <ol> <li>Barun K. Mitra, "Personality Development &amp; Soft Skills", Oxford Publishers, Third impre<br/>2017.</li> <li>Ghosh, Shantikumar. 2004. Universal Values. Kolkata: The Ramakrishna Mission Larry Ja<br/>"The First Book of Life Skills"; First Edition, Embassy Books, 2016.</li> <li>L.Chaito : Relaxation &amp; Meditation Techniques, 1983.</li> <li>4.</li> </ol>                                                                                                                                                           | ession,<br>ames, |  |  |

**Course Outcomes:** 

1. The student will be able to understand, analyze develop and exhibit accurate sense of self.

2. Think critically.

3. Demonstrate knowledge of personal beliefs and values and a commitment to continuing personal reflection and reassessment.

4. Learn to balance confidence with humility and overcome problems associated with personality.

| SET/ME/SC/C2      | 210                                                                                                                                                                                                                                                                                                              |               |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                   | Machining Practice Lab-II (Skill Enhancement                                                                                                                                                                                                                                                                     | Course)       |
| Course Objective: | 1. To make the student learn a Main parts machine and their functions                                                                                                                                                                                                                                            | •             |
|                   | 2. To learn various operations that can perform on the Machine.                                                                                                                                                                                                                                                  |               |
|                   | 3. To learn how to shape raw materials into useful products.                                                                                                                                                                                                                                                     |               |
| Course Outcome:   | <ol> <li>After Completion of this course the student would be able to know functions of machine parts.</li> <li>Able to shape raw materials according to design of the components.</li> </ol>                                                                                                                    | about         |
|                   |                                                                                                                                                                                                                                                                                                                  |               |
| Module Name       | Content                                                                                                                                                                                                                                                                                                          | No. of<br>Hrs |
| Module I          | Working and principle of Drilling machine, Important parts and Functions.<br>Tools used in Drilling and Taping, Clamping of jobs using various work<br>holding devices, Limitations of work holding devices. Functions of<br>Drilling machine attachments and accessories. Jigs and Fixture used in<br>drilling. | 10            |
| Module II         | Practice on Drilling machine for making components as per given design<br>related to operations:-Drilling, Counter boring, Counter sinking Internal<br>threading                                                                                                                                                 | 10            |
| Module III        | Function and working of Milling machine. Work holding device working,<br>Tooling in milling, Practice on Milling machine for making components as<br>per given design related to milling operations and Gear making.                                                                                             | 10            |
|                   | Total Hours                                                                                                                                                                                                                                                                                                      | 30            |

# SEMESTER III

| S. No. | Category                            | Course Code    | Course Title                              | L  | Т | Р | Contact<br>Hrs./<br>Week | Credits |
|--------|-------------------------------------|----------------|-------------------------------------------|----|---|---|--------------------------|---------|
| 10.    | Basic Science/<br>Multidisciplinary | SET/SH/BT/C301 | Mathematics III                           | 3  | 1 | - | 4                        | 4       |
| 11.    |                                     | SET/ME/BT/C302 | Solid Mechanics                           | 3  | 1 | - | 4                        | 4       |
| 12.    | Core Subjects                       | SET/ME/BT/C303 | Fluid Mechanics                           | 3  | 1 | - | 4                        | 4       |
| 13.    |                                     | SET/ME/BT/C304 | Engineering Thermodynamics                | 3  | 1 | - | 4                        | 4       |
| 14.    | Interdisciplinary<br>Subject        | SET/ME/BT/C305 | Engineering Materials and<br>Applications | 3  | 1 | - | 4                        | 4       |
| 15.    | Care Subjects                       | SET/ME/BT/C306 | Fluid Mechanics Lab                       | -  | - | 1 | 2                        | 1       |
| 16.    | Based Labs                          | SET/ME/BT/C307 | Engineering Materials and<br>Testing lab  | -  | - | 1 | 2                        | 1       |
| 17.    | Extracurricular<br>Courses/ CC      | VAC-3          | Indian Knowledge System-I*                | 2  | - | - | 2                        | 2       |
| 18.    | Skill Course                        | SET/ME/BT/C308 | Programming for problem solving           | -  | - | 1 | 4                        | 2       |
|        |                                     | TOTAL          |                                           | 17 | 5 | 3 | 30                       | 26      |

# MATHEMATICS III

# **Course objective:**

1. To introduce the solution methodologies for second order Partial Differential Equations withapplications in engineering.

|                                                                                                        | SET/SH/BT/C301MATHEMATICS- III                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Module Name                                                                                            | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No. of<br>Hrs. |
| Ordinary<br>Differential<br>Equations                                                                  | ODE of 2nd order with constant coefficients both homogeneous and non-homogeneous types with applications to electrical and mechanical systems. Difference equations and their solutions by Z transform. Series solutions of ODE of 2nd orders with variable coefficients with special emphasis to the differential equations of Legendre, Bessel and Chebyser. Legendre's polynomials, Chabyshev polynomials and Bessel's functions and their properties.                 | 10             |
| Integral<br>Transforms                                                                                 | Fourier transform and integral Hankel transforms and Hilbert transforms and their properties, some simple applications.                                                                                                                                                                                                                                                                                                                                                   | 10             |
| Partial Differential<br>Equations                                                                      | Linear PDE with constant coefficients of 2nd order and their classifications. PDE of parabolic, elliptic and hyperbolic type with illustrative examples. Separation of variables method for solving PDE, such as two dimensional heat equations, wave equations and Laplace equations.                                                                                                                                                                                    | 10             |
| Functions of a<br>Complex Variable                                                                     | Analytic functions, Cauchy Riemann equations, harmonic functions line integral in the complex plane, Cauchy's integral theorem, Cauchy's integral formula derivatives of analytic function, Liouvilles theorem, fundamental theorem of algebraic representation of a function by power series, Taylor's & Laurant series, poles & singularity of zeros. Residue theorem, conformal mapping, linear fractional transformation, special linear tranctional transformations. | 10             |
|                                                                                                        | Total No. of Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40             |
| <b>Text/references book</b><br>1. B. S. Grewal, "High<br>2. H K Das, "Advance<br>3. Erwin Kreyszig, "A | s<br>ner Engineering Mathematics", Khanna Publishers<br>ed Engineering Mathematics", S Chand<br>dvanced Engineering Mathematics" 9th Edition, John Wiley & Sons, 2006                                                                                                                                                                                                                                                                                                     |                |

4. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint,

2010.

# **Course outcomes:**

1. Upon completion of this course, students will be able to solve field problems in engineering involving partial differential equations. They can also formulate and solve problems involving random variables and apply statistical methods for analysing experimental data.

#### SOLID MECHANICS

#### **Course objectives:**

1.To understand the nature of stresses developed in simple geometries such as bars, cantilevers, beams, shafts, cylinders and spheres for various types of simple loads

2. To calculate the elastic deformation occurring in various simple geometries for different types of loading.

| SET/ME/BT/C302 SOLID MECHANICS                            |                                                                                                                                                                                                                                                                                                                                                                                                                  |                |  |  |  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|
| Module Name                                               | Contents                                                                                                                                                                                                                                                                                                                                                                                                         | No. of<br>Hrs. |  |  |  |
| Concept of Stress and<br>Strain                           | Deformation of bars: Hooke's law, stress, strain, and elongation; Tensile, compressive<br>and shearstresses in 2D solids; Elastic constants and their relations; Volumetric, linear<br>and shear strains; Principal stresses and strain; Principal planes; Mohr's circle.                                                                                                                                        | 12             |  |  |  |
| Mechanics of Beams                                        | Transverse loading on beams, point and distributed loads; Shear force and bend<br>moment diagrams; Types of beam supports – simplysupported, over-hanging,<br>cantilevers, fixed and guided beams; Static determinacy and indeterminacy; Theory of<br>bending of beams, pure bending stress distributionand neutral plane, second moment<br>of area; Different cross-sections of beams; Shear stressdistribution | 8              |  |  |  |
| Deflection of Beams                                       | Deflection of a beam using the double integration method;Computation of slopes and deflection inbeams; Myosotis method for computing deflections and slopes.Castigliano's theorems; Maxwellreciprocity theorem.Critical loads using Euler's theory; Different boundary conditions; Eccentric columns.                                                                                                            | 8              |  |  |  |
| Torsion and Twist                                         | Torsion stresses and deformation of circular and hollow shafts; Polar moment of area, stepped shafts;Deflection of shafts fixed at both ends; Stresses and deflection of helical springs.                                                                                                                                                                                                                        | 8              |  |  |  |
| Pressure Vessels                                          | Axial and hoop stresses in cylinders subjected to internal pressure; Deformation of thin and thickcylinders; Deformation in spherical shells subjected to internal pressure; Combined thermomechanical stress; Examples and case studies (boilers)                                                                                                                                                               | 8              |  |  |  |
|                                                           | Total No. of Hours                                                                                                                                                                                                                                                                                                                                                                                               | 44             |  |  |  |
| <b>Text/references books</b><br>1. Mechanics of Materials | by Bear Jhonston.                                                                                                                                                                                                                                                                                                                                                                                                |                |  |  |  |

2. Strength of Materials by Timoshenko and & Youngs.

3. Strength of Materials by Ryder

4. S. C. Crandall, N. C. Dahl, and T. J. Lardner, An Introduction to the Mechanics of Solids, McGraw Hill.

5. Fundamentals of Strength of Materials, Nag, Wiley India

6. E. P. Popov, Engineering Mechanics of Solids, Prentice Hall.

#### **Online resources:**

1. https://nptel.ac.in/courses/112/102/112102284/

2. https://nptel.ac.in/courses/105/105/105105108/

3. https://nptel.ac.in/courses/105/106/105106172/

#### **Course outcomes:**

At the end of this course students will demonstrate the ability to

1. Recognize various types loads applied on machine components of simple geometry and

understand the nature of internal stresses that will develop within the components

2. Evaluate the strains and deformation that will result due to the elastic stresses developed within the materials for simple types of loading

3. Analyse and design beams, shafts and hollow cylinders.

# FLUID MECHANICS

# **Course objectives:**

- 1. To learn about the application of mass and momentum conservation laws for fluid flows.
- 2. To understand the importance of dimensional analysis.
- 3. To obtain the velocity and pressure variations in various types of simple flows.

| SET/ME/BT/C303 FLUID MECHANICS                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |  |  |  |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|
| Module Name                                                              | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No. of<br>Hrs. |  |  |  |
| Introduction &<br>Fluid Statics                                          | Introduction: Continuum, Force, Stress, Strain, Solids vs. fluids, Types of fluids, Fluids<br>Properties, Newton's Law of Viscosity, Stokes' Theorem, Compressibility & vapor<br>pressure.<br>Fundamental Concepts: Fluid Flow definition (Eulerian vs. Langrangian), System vs.<br>Control Volume, Reynold's Transport Theorem.<br>Fluid Statics: Hydrostatic law, Pascal's law, Pressure at a point, Total Pressure, Centre of<br>Pressure, Pressure on a plane (Horizontal, Vertical & Inclined) & Curved Surface,<br>Buovancy & stability of floating & submerged bodies. Meta-centric height                                                                                                | 8              |  |  |  |
| Dynamics of<br>Fluid Flow                                                | <ul> <li>Fluid Kinematics: Types of flow (steady vs. unsteady, uniform vs. non-uniform, laminar vs. turbulent, One Two &amp; Three dimensional, compressible vs. incompressible, rotational vs. irrotational), Stream lines, path lines, streak lines, velocity components, convective, local &amp; total acceleration, velocity potential, stream function, Continuity equation in Cartesian co-ordinates.</li> <li>Fluid Dynamics: Introduction to Navier-Stokes's equation, Euler's equation of motion along a stream line, Bernoulli's equation, Application of Bernoulli's equation to Pitot tube, Venturimeter, Orifices, Orifices meter, Triangular &amp; Rectangular Notches.</li> </ul> | 8              |  |  |  |
| Dimensional<br>Analysis &<br>Laminar Flow                                | Dimensions of physical quantities, Dimensional homogeneity, Buckingham's Pi<br>theorem, Important dimensionless numbers & their significance, Model analysis<br>(Reynold, Froude & Mach).<br>Laminar Flow: Definition, Relation between pressure & shear stresses, Laminar flow<br>through round pipe, fixed parallel plates.                                                                                                                                                                                                                                                                                                                                                                    | 8              |  |  |  |
| Boundary Layer<br>Analysis                                               | Development of Boundary layer on a flat plate, Laminar & Turbulent Boundary Layers,<br>Laminar sub layer, Separation of boundary layer & Method of Controlling, Flow around<br>Immersed Bodies, Lift & Drag, Classification of Drag, Flow around circular cylinder &<br>Aerofoil, Development of lift on Aerofoil.                                                                                                                                                                                                                                                                                                                                                                               | 8              |  |  |  |
| Flow through<br>Pipes                                                    | Total energy line, Hydraulic grade line, Energy losses through pipe, Darchy-Weisbach equation, Minor losses on pipes, pipes in series & parallel, Siphons, Transmission of power, Turbulent flow, Velocity distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8              |  |  |  |
|                                                                          | Total hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40             |  |  |  |
| <b>Text/Reference Bo</b><br>1. S. Gupta, Fluid M<br>2. F. White, Fluid M | <b>oks</b><br>Iechanics and Hydraulic Machines, Pearson Publishers.<br>Iechanics, Tata-McGraw Hill publishers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |  |  |  |

3. R. Fox and A. McDonald, Fluid Mechanics, John Wiley Publishers

4. Cengel and Cimbala, Fluid Mechanics, Tata-McGraw Hill Publishers.

5. J. Douglas, J. Gasiorek, J. Swaffield, and L. Jack, Fluid Mechanics, Pearson Publishers.

6. C. Ojha, P. Bernstein and P. Chandramouli, Fluid Mechanics and Machinery, Oxford University Press.

#### **Online resources:**

https://onlinecourses.nptel.ac.in/noc22 ce85/preview

# **Course outcomes:**

At the end of this course students will demonstrate the ability to

1. Mathematically analyze simple flow situations.

2. Evaluate the performance of various pumps and turbines.

#### ENGINEERING THERMODYNAMICS

#### **Course objectives:**

- To learn about concept of entropy and irreversibility.
- To learn about the concept of thermodynamic relations and third law.
- To learn about power cycles and their efficiencies.
- To learn about the steam generation through boilers.

| SET/ME/BT/C304 ENGINEERING THERMODYNAMICS                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
| Module Name                                                                                                                                                       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No. of<br>Hrs. |  |  |
| Availability and<br>Irreversibility                                                                                                                               | Available energy, available energy referred to a cycle, quality of energy, maximum work in<br>a reversible process, reversible work by an open system exchanging heat only with<br>surroundings, useful work, dead state, availability, availability in a chemical reaction,<br>irreversibility and Gouy- Stodala Theorem, availability or energy balance, second law<br>efficiency, comments on energy, Helmholtz and Gibb's function. Problems                                                        | 6              |  |  |
| Thermodynamic<br>Relations,<br>Equilibrium and<br>Third law                                                                                                       | Mathematical conditions for exact differential, Maxwell's equation, Tds equations, difference in heat capacities, ratio of heat capacities, energy equation, Clausius-Clapeyron equation, evaluation of thermodynamic properties from an equation of state, general thermodynamic considerations on an equation of state, mixtures of variable composition, conditions of equilibrium of a heterogeneous system, Gibbs phase rule, Joule-Kelvin effect, Joule-Thompson coefficient and Inversion curve. | 8              |  |  |
| Power cycles                                                                                                                                                      | Review of all power cycles, Carnot Cycle, Rankine Cycle, Otto Cycle, Diesel Cycle, Dual<br>Cycle, Brayton Cycle, Stirling Cycle, Ericsson Cycle, Bell Coleman Cycle, Lenoir Cycle                                                                                                                                                                                                                                                                                                                       | 8              |  |  |
| Boilers                                                                                                                                                           | Purpose of steam generators, Classification of boilers, Fire tube and water tube boilers,<br>Mountings and accessories, description of Lancashire, Locomotive, Babcock Wilcox<br>boilers, draught and design of natural draught chimney, artificial draught, mechanical<br>draught, efficiency of boiler and heat balance. Problems                                                                                                                                                                     | 10             |  |  |
| Introduction to<br>Vapour Power<br>Cycles                                                                                                                         | Introduction: Components of Steam Power System, Carnot Cycle, Rankine Cycle, Modified Rankine Cycle, p-v, h-s and T-s diagram for Rankine and Modified Rankine Cycle, Reheat Cycle, Superheat Cycle, Regenerative Cycle, Reheat Cycle, reheat factor, binary vapor and supercritical cycles, co-generation, Mollier"s diagram, use of steam table, Problems                                                                                                                                             | 8              |  |  |
| Total No. of Hours                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40             |  |  |
| Text/ References Bo<br>1. Fundamentals of 7<br>2. Yunus Cengel, Th<br>3. Y V C Rao, An In<br>4. Engineering Therr<br>5. Fundamentals of 7<br>6. Fundamentals of 7 | oks<br>Chermodynamics by Sonntag, Wiley India<br>ermodynamics an Engineering Approach, Fourth Edition, Mc Graw Hill<br>troduction To Thermodynamics, Universities Press.<br>nodynamics by Jones and Dugans, PHI Learning Pvt. Ltd.<br>Chermodynamics by Sonntag, Wiley India<br>Classical Thermodynamics by Van Wylen, John Wiley.                                                                                                                                                                      |                |  |  |
| 7. Gas Turbine Theo                                                                                                                                               | ry & Practice, by Cohen & Rogers, Addison Weslay. Longman Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |  |  |

# **Online resources:**

https://archive.nptel.ac.in/courses/112/106/112106310/

#### **Course Outcomes:**

- 1. After completing this course, the students will get a good understanding of various practicalpower cycles.
- 2. They will be able to understand the conversion of heat energy into mechanical energy.
- 3. They will be able to understand the mechanism usedin boiler draught.

# ENGINEERING MATERIALS AND APPLICATIONS

#### **Course objectives:**

- 1. Broad understanding of different types of engineering materials and their applications.
- 2. Correlation between the internal structure of materials and their mechanical properties.
- 3. Various methods to quantify the mechanical integrity of materials and their failure criteria.

| SET/ID/BT/C305 ENGINEERING MATERIALS AND APPLICATIONS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| Module Name                                           | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No. of Hrs. |  |  |  |
| Engineering<br>Materials and<br>Classification        | Introduction of engineering materials and classification;Metals, Plastics, Ceramics<br>and Composites. Relevant properties:Physical, Mechanical, Thermal, Electrical,<br>Chemical. Applications and selection criteria.<br>Ferrous materials: Brief introduction of iron and steel, various types of carbon steels,<br>alloy steels, tool steels and cast irons its properties and uses.<br>Non-Ferrous metals and alloys: Non-ferrous metals such as Cu, Al, Zn, Cr, Ni,<br>Brass, Bronze etc. and its applications. | 6           |  |  |  |
| Crystallography<br>of Materials                       | Crystallography and Imperfections: Concept of unit cell space lattice, Bravais lattices, common crystal structures, Atomic packing factor and density, Miller indices, X-ray crystallography techniques, Imperfections, Defects & Dislocations in solids.                                                                                                                                                                                                                                                             | 8           |  |  |  |
| Phase diagram<br>and heat<br>treatment                | Phase diagrams and interpretation of microstructure; Iron Iron-carbide phase<br>diagram and cooling (TTT) diagrams. Heat treatment of Steel; Annealing, tempering,<br>normalizing, spheroidising, austempering, martempering, case hardening,<br>carburizing, nitriding, cyaniding,                                                                                                                                                                                                                                   | 8           |  |  |  |
| Mechanical<br>Properties and<br>Testing               | Stress strain diagram, Ductile &Brittle material, Stress vs. Strength, Toughness,<br>Hardness, Fracture, Fatigue and Creep.<br>Tensile, Compression, Torsion, Fatigue and Wear tests; Young's modulus; Relations<br>between true and engineering stress-strain curves; Hardness measurement their<br>relation to strength. Introduction to non-destructive testing (NDT).                                                                                                                                             | 6           |  |  |  |
| Polymers,<br>Ceramics and<br>Composites               | Polymers – Classification and applications; Ceramics – Oxide ceramics, ceramic insulators, bio-ceramics and Glasses; Composites – Reinforcement, matrix, metal matrix composites, ceramic composites, polymer composites, biomaterials.                                                                                                                                                                                                                                                                               | 6           |  |  |  |
| Electrical and<br>Magnetic<br>Materials               | Magnetic properties: Concept of magnetism - Dia, para, Ferro Hysteresis.Softand<br>hard magnetic materials, Magneticstorages.<br>Electric properties: Energy band concept of conductor, insulator and semi-conductor,<br>Intrinsic & extrinsic semi-conductors. p-n junction and transistors.                                                                                                                                                                                                                         | 6           |  |  |  |
|                                                       | Total No. of Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40          |  |  |  |
| Text/ References I                                    | Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |  |  |  |

- 1. Van Vlack Elements of Material Science & Engineering John Wiley & Sons.
- 2. V. Raghvan Material Science, Prentice Hall.
- 3. Callister/Balasubramaniam Callister"s Material Science & Engineering Wiley India.
- 4. Chawla, Composite Materials, Taylor & Francis.

#### Online resources: https://nptel.ac.in/courses/113102080

# **Course outcomes:**

At the end of this course students will

- 1. Know the range of engineering materials, their mechanical properties and applications.
- 2. Know various methods to measure the mechanical properties of materials.
- 3. Learn how to improve the properties of ferrous alloys through various heat treatments.

# SET/ME/BT/C306 FLUID MECHANICS LAB

- 1. To determine the coefficient of impact for vanes.
- 2. To determine coefficient of discharge of an orifice meter.
- 3. To determine the coefficient of discharge of Notch (V and Rectangular types).
- 4. To determine the friction factor for the pipes.
- 5. To determine the coefficient of discharge of venture meter.
- 6. To determine the coefficient of discharge, contraction & velocity of an orifice.
- 7. To verify the Bernoulli's Theorem.
- 8. To find critical Reynolds number for a pipe flow.
- 9. To determine the meta-centric height of a floating body.
- 10. To determine the minor losses due to sudden enlargement, sudden contraction and bends.
- 11. To show the velocity and pressure variation with radius in a forced vertex flow.
- 12. To verify the momentum equation.

#### Note: Student has to perform 8 experiments

# ENGINEERING MATERIALS AND TESTING L

#### SET/ME/BT/C307 ENGINEERING MATERIALS AND TESTING LAB

# **Engineering materials Lab Experiments:**

- 1. Making a plastic mould for small metallic specimen.
- 2. Specimen preparation for micro structural examination-cutting, grinding, polishing, etching.
- 3. Grain size determination of a given specimen.
- 4. Comparative study of microstructures of different given specimens (mild steel, gray cast iron, brass, copper etc.
- 5. Heat treatment experiments such as annealing, normalizing, quenching, case hardening and comparison hardness before and after.
- 6. Faradays law of electrolysis experiment.
- 7. Study of corrosion and its effects.
- 8. Study of microstructure of welded component and HAZ, Macro and Micro Examination.
- 9. Suitable experiment on Magnetic/ Electrical/ Electronic materials.

#### **Testing Lab Experiments:**

- 1. To perform Tensile Test on Mild-steel specimen and draw stress strain curve.
- 2. To perform Izod, Charpy Impact test on standard specimen.
- 3. To perform Brinell, Rockwell, Vicker Hardness Test on standard specimen.
- 4. To calculate Torsional Rigidity.
- 5. To calculate Fatigue Test on Fatigue Testing Machine
- 6. To calculate Modulus of Elasticity by Non Destructive Testing.
- 7. Detection of cracks by Ultrasonic Testing Machine.
- 8. Detection of cracks by Dye Penetration Technique.
- 9. Creep testing on creep testing machine.

10. To Draw SFD and BMD for a simple supported beam under point and distributed load.

Note: Student has to perform 5-5 experiments from both labs.

#### PROGRAMMING FOR PROBLEM SOLVING

#### **Course objectives:**

- 1. To learn the fundamentals of computers.
- 2. To understand the various steps in program development.
- 3. To learn the syntax and semantics of C programming language.
- 4. To learn the usage of structured programming approach in solving problems.
- 5. To understated and formulate algorithm for programming script
- 6. To analyze the output based on the given input variables

# SET/ME/BT/S308 PROGRAMMING FOR PROBLEM SOLVING

| Module Name        | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No. of Hrs. |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Module I           | Introduction to Programming; Introduction to components of a computer system (disks,memory, processor, where a program is stored and executed, operating system, compilers etc.)Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm: Flowchart/Pseudocode with examples. From algorithms to programs; source code, variables (with data types) variables and memorylocations, Syntax and Logical Errors in compilation, object and executable code. | 8           |
| Module II          | Arithmetic expressions and precedence, Recursion, Recursion as a different way of solving problems. Example programs, suchas Finding Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort.                                                                                                                                                                                                                                                                            | 8           |
| Module III         | Conditional Branching and Loops. Writing and evaluation of conditionals and consequent branching. Iteration and loops, Structures, Defining structures and Array of Structures                                                                                                                                                                                                                                                                                                                | 8           |
| Module IV          | Arrays, Arrays (1-D, 2-D), Character arrays and Strings, Basic Algorithms,<br>Searching, Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots<br>of equations, notion of order of complexity through example programs (noformal<br>definition required)                                                                                                                                                                                                                  | 8           |
| Module V           | Basic Algorithms, Searching, Basic Sorting Algorithms (Bubble, Insertion<br>andSelection), Finding roots of equations, notion of order of complexity through<br>example programs (noformal definition required), Function, Functions (including<br>using built in libraries), Parameter passing in functions, call by value, Passing arrays<br>to functions: idea of call by reference                                                                                                        | 8           |
|                    | Total No. of Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40          |
| Text/Reference Boo | aks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |

1. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill.

2. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill.

3. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of

# India.

# Alternative NPTEL/SWAYAM Course:

| S.NO. | NPTEL COURSE NAME       | INSTRUCTOR     | HOST INSTITUTE |
|-------|-------------------------|----------------|----------------|
| 1     | INTRODUCTION TO         | PROF. SATYADEV | IIT KANPUR     |
|       | PROGRAMMING IN C        | NANDAKUMAR     |                |
|       |                         |                |                |
| 2     | PROBLEM SOLVING THROUGH | PROF. ANUPAM   | IIT KHARAGPUR  |
|       | PROGRAMMING IN C        | BASU           |                |
|       |                         |                |                |

# EXPERIMENTS THAT MAY BE PERFORMED THROUGH VIRTUAL LABS:

| S. No. | Experiment Name                                             | Experiment Link(s)                                                                                              |
|--------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 1      | Simple computational problems using arithmetic expressions. | http://ps<br>iiith.vlabs.ac.in/exp7/Introduction.html?domain=Com<br>puter%20Science&lab=Problem%20Solving%20Lab |
| 2      | Iterative problems e.g., sum of series.                     | http://ps<br>iiith.vlabs.ac.in/exp4/Introduction.html?domain=Com<br>puter%20Science&lab=Problem%20Solving%20Lab |
| 3      | 1D Array manipulation.                                      | http://cse02-iiith.vlabs.ac.in/exp4/index.html                                                                  |

| 4 | Matrix problems, String operations.                | http://ps<br>iiith.vlabs.ac.in/exp5/Introduction.html?domain=Com<br>puter%20Science&lab=Problem%20Solving%20Lab |
|---|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 5 | Simple functions.                                  | http://cse02-iiith.vlabs.ac.in/exp2/index.html                                                                  |
| 6 | Programming for solving Numerical methods problems | http://ps<br>iiith.vlabs.ac.in/exp1/Introduction.html?domain=Com<br>puter%20Science&lab=Problem%20Solving%20Lab |
| 7 | Recursive functions.                               | http://ps<br>iiith.vlabs.ac.in/exp6/Introduction.html?domain=Com<br>puter%20Science&lab=Problem%20Solving%20Lab |

#### **Course outcomes:**

1. To formulate simple algorithms for arithmetic and logical problems

2. To translate the algorithms to programs (in C language).

3. To test and execute the programs and correct syntax and logical errors.

4. To implement conditional branching, iteration and recursion.

5. To decompose a problem into functions and synthesize a complete program using divide and conquer approach.

6. To use arrays, pointers and structures to formulate algorithms and programs.

7. To apply programming to solve matrix addition and multiplication problems and searching and sorting problems.

8. To apply programming to solve simple numerical method problems, namely rot finding of function,

differentiation of function and simple integration.

#### Semester IV

| S. No. | Category                             | Code           | Course Title                             | L | Т | Р | Contact<br>Hrs./Week | Credits |
|--------|--------------------------------------|----------------|------------------------------------------|---|---|---|----------------------|---------|
| 10.    |                                      | SET/ME/BT/C401 | Kinematics of Machines                   | 3 | 1 | - | 4                    | 4       |
| 11.    | Core Subjects                        | SET/ME/BT/C402 | Manufacturing Technology                 | 3 | 1 | - | 4                    | 4       |
| 12.    |                                      | SET/ME/BT/C403 | IC Engines                               | 3 | 1 | - | 4                    | 4       |
| 13.    |                                      | SET/ME/BT/C404 | Applied Thermodynamics                   | 3 | 1 | - | 4                    | 4       |
| 14.    | Interdisciplinary<br>Subject         | SET/ME/BT/C405 | Measurement, Metrology &<br>Control      | 3 | 1 | - | 4                    | 4       |
| 15.    | Coro Subigata                        | SET/ME/BT/C406 | Manufacturing Technology Lab.            | - | - | 1 | 2                    | 1       |
| 16.    | Based Labs                           | SET/ME/BT/C407 | Measurement, Metrology &<br>Control Lab. | - | - | 1 | 2                    | 1       |
| 17.    | IndianKnowledge<br>System-II(IKS-II) |                | Indian Knowledge System-II*              | 2 | - | - | 2                    | 2       |
| 18.    | Skill Course                         | SET/ME/BT/S408 | Machine Design, AutoCAD 2D-<br>3D        | - | - | 1 | 4                    | 2       |
|        | TOTAL                                |                |                                          |   | 5 | 3 | 30                   | 26      |

#### KINEMATICS OF MACHINE

# **Objectives:**

To understand the kinematics and rigid- body dynamics of kinematically driven machine components
 To understand the motion of linked mechanisms in terms of the displacement, velocity and acceleration at any

# point in a rigid link

| SET/ME/BT/C401 KINEMATICS OF MACHINE                                       |                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |  |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| Module Name                                                                | Contents                                                                                                                                                                                                                                                                                                                                                             | No. of Hrs. |  |  |  |
| Introduction & Velocity<br>in Mechanisms                                   | Links-types, Kinematics pairs-classification, Constraints-types, Degree of<br>Freedom, Grubler's equation, linkage mechanisms, inversions of four bar<br>linkage, slider crank chain and double slider crank chain.<br>Velocity of point in mechanism, relative velocity method, instantaneous point<br>in mechanism, Kennedy's theorem, instantaneous center method | 8           |  |  |  |
| Acceleration in<br>Mechanisms &<br>Mechanisms with<br>Lower Pairs          | Acceleration diagram, Coriolis component of acceleration, Klein's construction for Slider Crank and Four Bar mechanism, Analytic method for slider crank mechanism. Pantograph, Exact straight line motion mechanisms-Peaucellier's, Hart and Scott Russell mechanisms, Approximate straight line motion mechanisms Grasshopper, Watt and Tchebicheff mechanisms.    | 8           |  |  |  |
| Kinematics Synthesis of<br>Planar Linkages                                 | Movability of four bar linkages, Grashoff's law, graphical methods of<br>synthesis – Two and Three position synthesis of four bar and slider crank<br>mechanisms, Analytical method- Freudenstein's equation for function<br>generation (three position)                                                                                                             | 8           |  |  |  |
| Cams and Follower                                                          | Cams and Followers - Classification & terminology, Cam profile by graphical methods for uniform velocity, simple harmonic motion and parabolic motion of followers.                                                                                                                                                                                                  | 8           |  |  |  |
| Gears                                                                      | Classification & terminology, law of gearing, tooth forms, interference, under<br>cutting, minimum number of teeth on gear and pinion to avoid interference,<br>simple, compound and planetary gear trains                                                                                                                                                           | 8           |  |  |  |
|                                                                            | Total No. ofHours                                                                                                                                                                                                                                                                                                                                                    | 40          |  |  |  |
| Text Books 1. Theory of machines and 2. Theory of machines and References: | mechanisms-Ghosh & Mallik, East-West Press<br>mechanisms- S. S. Ratan, Tata Mc-Graw Hill                                                                                                                                                                                                                                                                             |             |  |  |  |

1.Kinematics, Dynamics and Design of Machinery, 2ed, w/CD, Waldron, Wiley India

# **Online Resources:**

1. https://nptel.ac.in/courses/112105268

# **Course Outcomes:**

At the end of this course students will demonstrate the ability to

1. Design various types of linkage mechanisms for obtaining specific motion and analyze them for optimal functioning

### MANUFACTURING TECHNOLOGY

# **Objectives:**

1. To motivate and challenge students to understand and develop an appreciation of the processes in correlation with material properties which change the shape, size and form of the raw materials into the desirable product by conventional manufacturing methods.

| Module Name                                                    | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No. of<br>Hrs. |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Machining<br>Operations                                        | Lathe: Principle, types, operations, Shaper, Slotter, Planer, Milling: Milling cutters, up & down milling. Dividing head & indexing. Max chip thickness & power required. Drilling and Boring : Drilling, Boring, reaming tools. Geometry of twist drills.                                                                                                                                                                                                                                                                          | 6              |
| Metal Cutting<br>and Machine Tool                              | Metal Cutting- Mechanics of metal cutting, Geometry of tool and nomenclature, ASA system Orthogonal vs. oblique cutting. Shear angle relationship. Merchant's force circle diagram. Cutting forces, power required. Cutting fluids/lubricants. Tool materials. Tool wear and tool life. Economics of metal cutting.                                                                                                                                                                                                                 | 10             |
| Casting Processes                                              | Basic principle of casting, Types of patterns and allowances. Types and properties of moulding sand. Elements of mould and design considerations, Gating, system, Solidification of casting, Sand casting, defects & remedies and inspection. Die Casting, Centrifugal casting. Investment casting, CO2 casting and Stir casting.                                                                                                                                                                                                   | 8              |
| Forming<br>Processes                                           | Introduction, plastic flow of metals, flow-stress curve, plastic deformation, yield<br>criteria, work hardening, recrystallization, Hot working vs. cold working, Rolling, ,<br>defects in rolled products. Extrusion: Introduction, direct, indirect, impact extrusion,<br>defects and their application in industries. types of forging, forging operations, Design<br>considerations and defects in forging and applications, sheet metal operations like<br>,Blanking, Piercing, punching, drawing, deep drawing and embossing, | 10             |
| Grinding and<br>Metal Joining<br>Process                       | Grinding & super finishing-Grinding: Grinding wheels, abrasive, cutting action.<br>Grinding wheel specification, Grinding wheel wear – attritions wear, fracture wears.<br>Dressing and Truing. Surface and Cylindrical grinding. Centerless grinding. Super<br>finishing: Honing, lapping, and polishing. Welding principle, electrodes, processes. Gas<br>welding process and equipment. Arc welding: TIG & MIG, Resistance Welding-Spot<br>and seam welding, Welding defects.                                                    | 10             |
| Total No. of Hrs                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42             |
| <b>Text Books</b><br>1. Modern Machinin<br>2. Manufacturing Te | g Processes by P.C. Pandey & H.S. Shan.<br>chnology Metal Cutting & Machine Tools by PN Rao, TMH.                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |

#### **Online Resource:**

1 https://www.mooc-list.com/tags/manufacturing

#### **Course Outcomes:**

At the end of this course students will demonstrate the ability to

1. Understand the different conventional manufacturing methods employed for making different products.
#### I.C. ENGINES

#### **Objectives:**

1. To motivate and challenge students to understand the concept of two-stroke and 4- stroke engine.

2. To understand the new technologies used in I.C. Engine like Supercharger, EFI, Magneto and battery ignition.

| SET/ME/BT/C403 I.C. ENGINES |                                                                                         |        |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------|--------|--|--|
| Module Name                 | Contents                                                                                | No. of |  |  |
|                             |                                                                                         | Hrs.   |  |  |
| Introduction                | Introduction to I.C Engines: Engine classification, Air standard cycles, Otto, Diesel,  | 8      |  |  |
| to I.C Engines              | Dual Stirling and Ericsson cycles, Two and four stroke engines, SI and CI engines,      |        |  |  |
| and Fuels                   | Rotary engines, stratified charge engine, Fuel air cycles and their analysis, Actual    |        |  |  |
|                             | cycles and their analysis, Valve timing diagram. Concept of variable compression        |        |  |  |
|                             | ratio engines (VCR). Fuels: Fuels for SI and CI engine, important qualities of SI       |        |  |  |
|                             | engine fuels, Rating of SI engine fuels, Important qualities of CI engine fuels, Dopes, |        |  |  |
|                             | Additives, Gaseous fuels, LPG, CNG, Biogas, Producer gas, Alternative fuels for IC      |        |  |  |
|                             | engines                                                                                 | 0      |  |  |
| SI Engines                  | Carburetion, Mixture requirements, Carburetor types Theory of carburetor, MPFI,         | 8      |  |  |
|                             | Combustion in SI engine, Flame speed, Ignition delay, abnormal combustion and it's      |        |  |  |
|                             | Control, composition chamber design for SI engines. Ignition system requirements,       |        |  |  |
|                             | ignition battery and its types Charging and discharging of batteries                    |        |  |  |
| CI Engines                  | Fuel injection in CL engines Requirements Types of injection systems CRDL Fuel          | 8      |  |  |
| CI Engines                  | numps Eucliniectors Injection timings Combustion in CL engines Ignition delay           | 0      |  |  |
|                             | Knock and it's control. Combustion chamber design of CL engines. Scavenging in 2        |        |  |  |
|                             | Stroke engines, pollution and it's control                                              |        |  |  |
| Lubrication &               | Engine Cooling: Different cooling systems, Cooling Towers, Radiators and cooling        | 8      |  |  |
| Supercharging               | fans.                                                                                   | -      |  |  |
| 1 88                        | Lubrication: Engine friction, Lubrication principal, Type of lubrication, Lubrication   |        |  |  |
|                             | oils, Crankcase ventilation.                                                            |        |  |  |
|                             | Supercharging: Effect of altitude on power output, Types of supercharging. Testing      |        |  |  |
|                             | and Performance: Performance parameters, Basic measurements, Blow by                    |        |  |  |
|                             | measurement, Testing of SI and CI engines                                               |        |  |  |
| Compressors                 | Classification, Reciprocating compressors, Single and multi stage, Intercooling,        | 8      |  |  |
|                             | Volumetric efficiency. Rotary compressors, Classification, Centrifugal compressor,      |        |  |  |
|                             | Elementary theory, Vector Diagram efficiencies, Elementary analysis of axial            |        |  |  |
|                             | compressors.                                                                            | 40     |  |  |
| Tart Darler                 | Total No. of Hrs                                                                        | 40     |  |  |
| 1 I C Engines h             | u Conoshan TMH                                                                          |        |  |  |
| 2 I C Engines b             | y Galicshall, Hvin<br>z Ferguson Wiley India                                            |        |  |  |
| 2.1 C Elignics Uy           | ternational Computition Engines, by Mathur & Sharma, Dhannat Rai & Sons                 |        |  |  |
| References Rool             | zs                                                                                      |        |  |  |
|                             |                                                                                         |        |  |  |

1. I.C Engine Analysis & Practice by E.F Obert.

2. I.C Engine, by R. Yadav, Central Publishing House, Allahabad.

### **Online Resource:**

### 1.<u>https://www.youtube.com/watch?v=CO2StedJtAc&list=PLwdnzlV3ogoXHbVNKWL1BYOo\_8PpyNtn</u>c

#### **Course Outcomes:**

At the end of this course students will demonstrate the ability to

1. Understand the basic concepts of S.I and C.I. Engine.

2. Understand about fuels and future alternative fuels.

### APPLIED THERMODYNAMICS

### **Objectives:**

- 1. To learn about gas dynamics of air flow and steam through nozzles
- 2. To learn the about reciprocating compressors with and without intercooling
- 3. To analyze the performance of steam turbines

|                                                   | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>INO. OI IIIS.</b> |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Steam Engines &<br>Steam Nozzles                  | Steam Engine: Working of steam engine, single acting and double acting steam engine, ,<br>ideal and actual indicator diagram, mean effective pressure, diagram factor, mechanical<br>& thermal efficiency of steam engine.Steam Nozzles: Function of steam nozzles, shape<br>of nozzles for subsonic and supersonic flow of steam, Steady state energy equation,<br>continuity equation, nozzle efficiency, critical pressure ratio for max. Discharge,<br>Problems. | 8                    |
| Steam Turbines                                    | Steam Turbine: Classification of steam turbine, impulse turbine, working principle, compounding of impulse turbine, velocity diagram, power output and efficiency of a single stage impulse turbine, reaction turbine, working principle, degree of reaction, velocity diagram, power output and efficiency, governing of steam turbines, problem.                                                                                                                   | 8                    |
| Steam Condensers &<br>Fuel and Fuel<br>Combustion | Steam Condensers: Classification of condensers, sources of air leakage in condensers, effect of air leakage in condenser, vacuum efficiency, condenser efficiency, air pumps, cooling water calculation, and problem. Fuel and Combustion: Classification of fuels – solid, liquid and gaseous fuels, calorific values of fuels, stochiometric air fuel ratio, excess air requirement, analysis of exhaust gases, problem.                                           | 10                   |
| Compressors & Gas<br>Power Cycles                 | Introduction to Centrifugal, Axial Flow Compressors, Reciprocating Compressors;<br>Combustion Chambers; Simple gas turbine cycle – single and twin shaft arrangements,<br>intercooling, reheating, regeneration, closed cycles, optimal performance of various<br>cycles, combined gas and steam cycles;; Problems                                                                                                                                                   | 8                    |
| et Propulsion                                     | Jet Propulsion: turbojet, turboprop, turbofan, ramjet, thrust and propulsive efficiency;<br>Rocket Propulsion; Direct Energy Conversion: thermionic and thermoelectric<br>converters, photovoltaic generators, MHD generators, fuel cells.                                                                                                                                                                                                                           | 6                    |
| Total no. of Hours                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |

### **Online Resource:**

https://www.youtube.com/watch?v=fNPPwmfE-SY&list=PL6Qggk0O9yRItYPKm51jEnZoM-mSOM4XA **Course Outcomes:** 

1. After completing this course, the students will get a good understanding of various practical power cycles and heat pump cycles.

2. They will be able to analyze energy conversion in various thermal devices such as combustors, air coolers, nozzles, diffusers, steam turbines and reciprocating compressors

3. They will be able to understand phenomena occurring in high speed compressible flows

#### MEASUREMENTS, METROLOGY AND CONTROL

#### **Objectives:**

1. To understand the proper use and maintenance of important instruments, such as Vernier callipers, autocollimators, slip gauges, and pyrometers

2. To identify the techniques for the quality assurance of the products and the optimality of the process in terms of resources and time management.

|                     | SET/ME/BT/C405. MEASUREMENTS, METROLOGY AND CONTROL                                                                                                                          |        |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Module Name         | Contents                                                                                                                                                                     | No. of |
|                     |                                                                                                                                                                              | Hrs.   |
| Measurement         | Parameters - geometry (straightness, flatness, roundness, etc.), displacement, force,                                                                                        | 8      |
| Purpose             | speed, torque, flow, level, pressure, temperature, acceleration, etc.; Definitions:                                                                                          |        |
| Parameters and      | Accuracy, precision, range, resolution, uncertainly and error sources; Regression                                                                                            |        |
| Principle           | analysis.Structure and examples of measurement systems; Calibration principles; Linear                                                                                       |        |
|                     | and angular measurements; Comparators; Gauge design; Interferometry.                                                                                                         | 0      |
| Limits, Fit and     | Definitions; Tolerance zone and grades, Hole and shaft system, Geometric tolerances,                                                                                         | 8      |
| Tolerances          | Tylor's principle of gauging, Design of tolerances for various applications; Tolerance analysis in manufacturing and assembly; Role of metrology in Design of Manufacturing. |        |
|                     |                                                                                                                                                                              |        |
| Mechanical          | Dimensional metrology – Vernier, micrometers, LVDT; Form metrology – form tester,                                                                                            | 8      |
| Measurements        | surface profiler, CMM, 3D scanning; Surface metrology – optical microscopes, Laser                                                                                           |        |
| and Equipment       | scanning microscopes, electron microscopy (SEM/TEM), x-ray microscopy, Raman                                                                                                 |        |
|                     | spectroscopy; lool wear, workpiece quality and process metrology. Measurement of                                                                                             |        |
|                     | for methods; Magnetic                                                                                                                                                        |        |
| Flastriagl          | liow inclers.                                                                                                                                                                | 0      |
| Electrical          | Signal generators and analysis, wave analyzer, spectrum analyzer,                                                                                                            | 0      |
| Measurements        | times strain ages displacement transducers. Digital data acquisition material                                                                                                |        |
| and instruments     | types, suam gages, displacement dansducers, <i>Digital adia acquisition system</i> -                                                                                         |        |
|                     | amplifier Isolation amplifier Computer controlled test system, instrumentation                                                                                               |        |
| Design of           | amplifier, isolation amplifier, Computer-controlled test system                                                                                                              | 0      |
| Design of           | DOE techniques; Tagueni orthogonal arrays; Data acquisition, signal processing and                                                                                           | 0      |
| Experiments and     | conditioning, Error of a system of ideal elements, Error probability density function of a                                                                                   |        |
| Analysis            | in industry                                                                                                                                                                  |        |
| Analysis            | in industry.                                                                                                                                                                 |        |
|                     |                                                                                                                                                                              |        |
|                     | Total No. of Hrs                                                                                                                                                             | 40     |
| Reference Books:    |                                                                                                                                                                              |        |
| 1. B.C. Kuo, "Aut   | omatic Control System" Wiley India.                                                                                                                                          |        |
| 2. Doeblein E.O., " | Measurement Systems, Application Design", McGraw Hill.                                                                                                                       |        |
| Text Book:          |                                                                                                                                                                              |        |
| 1. Beckwith Thoma   | s G., Mechanical Measurements, Narosa Publishing House.                                                                                                                      |        |
| 2. Nagrath & Gopal  | , "Control System Engineering", 4th Edition, New age International.                                                                                                          |        |

#### **Online Resource:**

1. Mechanical Measurements and Metrology by Prof. S P Venkateshan (IIT Madras), NPTEL Course (Link: https://nptel.ac.in/courses/112/106/112106138/).

2. Principles of Mechanical Measurement by Prof. Dipankar N Basu (IIT Guwahati), NPTEL Course (Link: https://nptel.ac.in/courses/112/103/112103261/).

#### **Course Outcomes:**

At the end of this course students will demonstrate the ability to

1. Basic knowledge about measurement systems and their components

2. Various instruments used for measurement of mechanical and electrical parameters

#### SET/ME/BT/C406. MANUFACTURING TECHNOLOGY LAB

### List of Experiments:

- 1. Bolt (thread) making on Lathe machine.
- 2. Tool grinding (to provide tool angles) on tool-grinder machine.
- 3. Gear cutting on Milling machine.
- 4. Finishing of a surface on surface-grinding machine.
- 5. Drilling holes on drilling machine and study of twist-drill.
- 6. Study of different types of tools and its angles & materials.
- 7. Gas welding experiment.
- 8. Arc welding experiment.

9. Resistance welding experiment.

- 10. Soldering & Brazing experiment.
- 11. Design of pattern for a desired casting (containing hole).

12. Pattern making.

13. Making a mould (with core) and casting.

- 14. Sand testing (at least one such as grain fineness number determination).
- 15. Forging: hand forging processes.
- 16. Forging: power hammer study & operation.
- 17. Tube bending with the use of sand and on tube bending m/c.
- 18. Press work experiment such as blanking/piercing, washer, making etc.
- 19. Wire drawing/extrusion on soft material.

20. Rolling-experiment.

### Note: At least fifteen experiments should be performed from the above list.

### MEASUREMENT, METROLOGY & CONTROL LAB

#### SET/ME/BT/C 407 MEASUREMENT, METROLOGY & CONTROL LAB

#### **List of Experiments:**

- 1. Study & working of simple measuring instruments- Vernier calipers, Micrometer, Tachometer.
- 2. Measurement of effective diameter of a screw thread using 3 wire methods.
- 3. Measurement of angle using Sine bar & slip gauges.
- 4. Study of limit gauges.
- 5. Study & angular measurement using level protector.
- 6. Adjustment of spark plug gap using feeler gauges.
- 7. Study of dial indicator & its constructional details.
- 8. Use of dial indicator to check a shape run use.
- 9. Study and understanding of limits, fits & tolerances.
- 10. Study of Pressure & Temperature measuring equipment.
- 11. Strain gauge measurement.
- 12. Speed measurement using stroboscope.
- 13. Flow measurement experiment.
- 14. Vibration/work measuring experiment.
- 15. Experiment on Dynamometers.

Note: At least eight experiments (Four of Measurement and remaining four for the Metrology & control) should be performed from the above list.

#### SET/ME/BT/S408. \*Machine Drawing and AUTOCAD 2D-3D

### List of Experiments:

- 1. Design & drawing of Cotter joint
- 2 Design & drawing of Knuckle joint
- 3 Design of machine components subjected to combined steady and variable loads
- 4 Design of eccentrically loaded riveted joint
- 5 Design of boiler riveted joint
- 6 Design of shaft for combined constant twisting and bending loads
- 7 Design of shaft subjected to fluctuating loads
- 8 Design and drawing of flanged type rigid coupling
- 9 Design and drawing of flexible coupling
- 10 Design and drawing of helical spring
- 11 Design and drawing of screw jack

Isometric Drawings by CAD :Drawings of following on computer:Cone, Cylinder, Isometric view of objects 3D Modelling: 3D modelling, Transformations, scaling, rotation, translation

Various Programmes on ANSYS.

### SEMESTER V

| S. No. | Category                                             | S. No.         | Course Title                                          | L  | Т | Р | Contact<br>Hrs./Week | Credits |
|--------|------------------------------------------------------|----------------|-------------------------------------------------------|----|---|---|----------------------|---------|
| 1.     |                                                      | SET/ME/BT/C501 | Machine Design-I                                      | 3  | 1 | - | 4                    | 4       |
| 2.     | Core Subjects                                        | SET/ME/BT/C502 | Dynamics of Machines                                  | 3  | 1 | - | 4                    | 4       |
| 3.     |                                                      | SET/ME/BT/C503 | Refrigeration & Air<br>Conditioning                   | 3  | 1 | - | 4                    | 4       |
| 4.     |                                                      |                | <sup>@</sup> Program Elective-I                       | 3  | 1 | - | 4                    | 4       |
| 5.     | Open Elective /<br>Inter-<br>disciplinary<br>Subject |                | #Open Elective-I                                      | 3  | 1 | - | 4                    | 4       |
| 6.     | Core Subjects                                        | SET/ME/BT/C504 | Machine & Mechanism Lab.                              | -  | - | 1 | 2                    | 1       |
| 7.     | Based Labs                                           | SET/ME/BT/C505 | Refrigeration & Air<br>Conditioning Lab.              |    | - | 1 | 2                    | 1       |
| 8.     | Extracurricular/<br>Courses/<br>Compulsory course    | SET/EC/BT/M505 | *Culture, traditions and moral values/ Yoga Practices | -  | - | 1 | 4                    | 2       |
| 9.     | Skill Course                                         | SET/ME/BT/S506 | Mini Project-I                                        | -  | - | 2 | 4                    | 2       |
|        |                                                      | TOTAL          |                                                       | 15 | 5 | 4 | 32                   | 26      |

(a)Course offered by the department from the Program Elective- I list as given below. #Courses offered by any other department of School of Engineering and Technology. \*University will prepare a course with focus on Indian/ Regional culture studies. In case no syllabus is prepared by the university then yoga Practices course will be offered.

|                     | S. No. | Code           | Course Title                 |
|---------------------|--------|----------------|------------------------------|
|                     | 5.     | SET/ME/BT/E507 | Mechatronics                 |
| Program Elective- I | 6.     | SET/ME/BT/E508 | Engineering Tribology        |
|                     | 7.     | SET/ME/BT/E509 | CNC Machines and Programming |
|                     | 8.     | SET/ME/BT/E510 | Nanotechnology               |

|                         | S. No. | Code                | Course Title                        |
|-------------------------|--------|---------------------|-------------------------------------|
|                         | 5.     | SET/ME/BT/OE<br>511 | Python                              |
| <b>Open Elective- I</b> | 6.     | SET/ME/BT/OE<br>512 | Industrial Engineering & Management |
|                         | 7.     | SET/ME/BT/OE<br>513 | Numerical Methods in Engineering    |
|                         | 8.     | SET/ME/BT/OE<br>514 | Human resource management           |

# **MACHINE DESIGN - I**

- To understand safety-critical design of machine components using failure criteria based on mechanics of materials.
- To understand the origins, nature and applicability of empirical design principles, relevant codes, standards and design guidelines for different machine elements.
- To appreciate the relationships between component level design and overall machine system design and performance.

| SET/ME/BT/C501 MACHINE DESIGN - I |                                                                          |        |  |
|-----------------------------------|--------------------------------------------------------------------------|--------|--|
| Module                            | Contents                                                                 | No. of |  |
| Name                              |                                                                          | Hrs.   |  |
| Introduction                      | Introduction: Definition, Methods, standards in design & selection of    | 8      |  |
|                                   | preferred size. Selection of materials for static & fatigue loading,     |        |  |
|                                   | Materials for components subjected to creep, BIS system of               |        |  |
|                                   | designation of steels, steels, plastics & rubbers. AISI (American Iron & |        |  |
|                                   | Steel Institution), ASTM rubber testing methods.                         |        |  |
| Design                            | Design against static load: Modes of failure, Factor of safety, stress-  | 10     |  |
| against static                    | strain relationship, principal stresses, theories of Failure. Design     |        |  |
| and                               | against fluctuating load: stress concentration, stress concentration     |        |  |
| fluctuating                       | factors, Fluctuating/alternating stresses, fatigue failure, endurance    |        |  |
| load                              | limit, design for finite & infinite life, Soderberg & Goodman criteria   |        |  |
| Design of                         | Design of Joints: Welded joint, screwed joints, eccentric loading of     | 10     |  |
| Joints, Shaft,                    | above joints, joint design for fatigue loading.                          |        |  |
| Keys &                            | Shaft, keys & coupling: Design against static and fatigue loads,         |        |  |
| Coupling                          | strength & rigidity design, Selection of square & flat keys & splines,   |        |  |
|                                   | rigid & flexible couplings.                                              |        |  |
| Design of                         | Mechanical springs: Design of Helical and leaf springs, against static   | 8      |  |
| Mechanical                        | & fatigue loading.                                                       |        |  |
| Springs and                       | Design analysis of Power Screws: Form of threads, square threads,        |        |  |
| Power                             | trapezoidal threads, stresses in screw, design of screw jack.            |        |  |
| Screws                            |                                                                          |        |  |
| Introduction                      | Introduction to Product Development & Design Process: Definition of      | 8      |  |
| to Product                        | Design, Design Process, Need Analysis, and Need based                    |        |  |
| Development                       | developments, Design by Evolution; Technology based developments,        |        |  |
| & Design                          | Examples case Studies, and brain-storming.                               |        |  |
| Process                           |                                                                          |        |  |
|                                   | Total no. of Hours                                                       | 44     |  |
| Text/ Referen                     | ces Books and:                                                           |        |  |

- 1. Design of Machine Elements: V.B. Bhandari, TMH.
- 2. Machine design : Sharma & Aggarwal, Katsons publications.
- 3. Mechanical Design, Theory and Methodology, Waldron, BSP, Hyderabad.
- 4. Machine Design : Maleev & Hartman.
- 5. Machine Design, Robert L Norton, Pearson .
- 6. Machine Design –U C Jindal, Pearson

## **Online resources:**

## https://archive.nptel.ac.in/courses/112/105/112105124/

### **Course outcomes:**

At the end of this course students will demonstrate the ability to

- Principles of machine elements and how they can be combined to function as a system.
- Failure analysis of machine elements.
- An overview of codes, standards and design guidelines for different elements.
- Ability to analyze mechanical systems

# **DYNAMICS OF MACHINE**

- To understand the kinematics and rigid- body dynamics of kinematically driven machine components.
- To understand the motion of linked mechanisms in terms of the displacement, velocity and acceleration at any point in a rigid link.
- To be able to design linkage mechanisms and cam systems to generate specified output motion.
- To understand the kinematics of gear trains

| SET/ME/BT/C502 DYNAMICS OF MACHINE |                                                                             |      |  |  |
|------------------------------------|-----------------------------------------------------------------------------|------|--|--|
| Module                             | Contents                                                                    |      |  |  |
| Name                               |                                                                             | of   |  |  |
|                                    |                                                                             | Hrs. |  |  |
| Force                              | Static force analysis of linkages, Equivalent offset inertia force, Dynamic | 8    |  |  |
| Analysis,                          | analysis of slider crank & Bar mechanism. Piston and Crank effort, Inertia, |      |  |  |
| Turning                            | Torque, Turning moment diagrams, Fluctuation of energy, Flywheel.           |      |  |  |
| Moment &                           |                                                                             |      |  |  |
| Fly Wheel                          |                                                                             |      |  |  |
| Balancing                          | Static and dynamic balancing, balancing of rotating and reciprocating       | 8    |  |  |
| of                                 | masses, Primary and secondary forces and couples.                           |      |  |  |
| Machines                           |                                                                             |      |  |  |

| Brakes and                                    | Friction: Pivot and collar friction, Friction circle, Single plate, Multi-plate | 8  |  |  |
|-----------------------------------------------|---------------------------------------------------------------------------------|----|--|--|
| Dynamome                                      | and Cone clutches, Michelle & Kingsbury thrust bearing and rolling              |    |  |  |
| ters                                          | contact bearing, Belts and pulleys, Flat and V belts, Design and selection.     |    |  |  |
|                                               | Brakes and Dynamometers (Mechanical Type): External and internal shoe           |    |  |  |
|                                               | brakes, Band and Block brakes, Hydraulic brakes, Absorption and                 |    |  |  |
|                                               | Transmission dynamometers.                                                      |    |  |  |
| Governors                                     | Governors: Dead weight and spring loaded governors, Sensitivity,                | 8  |  |  |
| and                                           | Stability, Hunting, Isochronisms, Effort and Power, Friction and                |    |  |  |
| Gyroscopic                                    | Insensitivity, Introduction to inertia governors.                               |    |  |  |
| Motion                                        | Gyroscopic Motion: Principles, Gyroscopic acceleration, gyroscopic              |    |  |  |
|                                               | couple and Reaction. Effect of Gyroscopic couple upon the stability of          |    |  |  |
|                                               | aeroplanes, ships, two & four wheelers.                                         |    |  |  |
| Vibrations                                    | Single degree-of-freedom systems; Natural frequency and critical                | 8  |  |  |
| of Machine                                    | damping; Forced vibration; Resonance; Balancing of reciprocating and            |    |  |  |
| Elements                                      | rotating masses; Torsional vibration and critical speeds of shafts.             |    |  |  |
|                                               | Total no. of Hours                                                              | 40 |  |  |
| Text/ Refere                                  | nces books:                                                                     |    |  |  |
| 1. Theory of Machine: Thomas Bevan (Pearson). |                                                                                 |    |  |  |

2. Theory of Machine: S.S.Ratan (TMH).

3. Kinematics, Dynamics & Design of Machinery-Waldron (Pearson).

### **Online resources:**

## https://archive.nptel.ac.in/courses/112/104/112104114/

### **Course outcomes:**

At the end of this course students will demonstrate the ability to design various types of linkage mechanisms for obtaining specific motion and analyze them for optimal functioning.

# **REFRIGERATION & AIR CONDITIONING**

- To familiarize with the terminology associated with refrigeration systems and air conditioning.
- To understand basic refrigeration processes.
- To understand the basics of psychrometry and practice of applied psychrometrics.
- To acquire the skills required to model, analyse and design different refrigeration as well as air conditioning processes and components

| S S          | SET/ME/BT/C503 REFRIGERATION & AIR CONDITIONING                               |     |
|--------------|-------------------------------------------------------------------------------|-----|
| Module       | Contents                                                                      | No  |
| Name         |                                                                               | of  |
|              |                                                                               | Hrs |
| Refrigeratio | Introduction to refrigeration system, Methods of refrigeration, Carnot        | 8   |
| n            | cycle, Reversed Carnot cycle, Carnot refrigerator and heat pump Unit of       |     |
|              | refrigeration, Air Refrigeration cycle: Open and closed air refrigeration     |     |
|              | cycles, Bell Coleman or Reversed Brayton air refrigeration cycle, Aircraft    |     |
|              | refrigeration system, Classification of aircraft refrigeration system. Simple |     |
|              | system, Boot strap refrigeration, Regenerative, Reduced ambient, Dry air      |     |
|              | rated temperature (DART) Steam jet refrigeration                              |     |
| Vapour       | Modification in reversed Carnot cycle, Single stage system, Analysis of       | 8   |
| Compressio   | vapour compression cycle, use of T s and p h charts, Effect of change in      |     |
| n System     | suction and discharge pressures on C O P, Effect of sub cooling &             |     |
|              | superheating of suction vapour on performance of the cycle, Actual vapour     |     |
|              | compression cycle, Different configuration of multistage system, Cascade      |     |
|              | system                                                                        |     |
|              | Refrigerants: Classification, Nomenclature, Desirable properties of           |     |
|              | refrigerants, Common refrigerants, Secondary refrigerants and CFC free        |     |
|              | refrigerants.                                                                 |     |
| Vapour       | Working Principal of vapour absorption refrigeration system, Comparison       | 8   |
| Absorption   | between absorption & compression systems, Ammonia – Water vapour              |     |
| System       | absorption system, Lithium Bromide water vapour absorption system,            |     |
|              | Comparison                                                                    |     |
| Air          | Introduction to air conditioning, Psychrometric properties and their          | 8   |
| Conditionin  | definitions, Psychrometric chart, Different Psychrometric processes,          |     |
| g            | Sensible heat factor (SHF), By pass factor, Apparatus dew point (ADP),        |     |
|              | Thermal analysis of human body, Design considerations, Effective              |     |
|              | temperature and comfort chart, Cooling and heating load calculations,         |     |
|              | Infiltration & ventilation, Internal heat gain, Grand Sensible heat factor (  |     |
|              | GSHF)                                                                         |     |
| Refrigeratio | Elementary knowledge of refrigeration & air conditioning equipments e g       | 8   |
| n            | compressors, condensers, evaporators & expansion devices, Air washers,        |     |
| Equipment    | Cooling, towers & humidifying efficiency, Food preservation, cold             |     |

| &<br>Application<br>s                                                    | storage, Freezers, Ice plant, Water coolers, Elementary knowledge of transmission and distribution of air through ducts and fans, Basic difference between comfort and industrial air conditioning. |    |  |  |  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
|                                                                          | Total No. of Hrs                                                                                                                                                                                    | 40 |  |  |  |
| Text/ References Books:                                                  |                                                                                                                                                                                                     |    |  |  |  |
| 1. Refrigeration and Air conditioning by C P Arora TMH.                  |                                                                                                                                                                                                     |    |  |  |  |
| 2 Refrigeration and Air conditioning by Arora & Domkundwar, Dhanpat Rai. |                                                                                                                                                                                                     |    |  |  |  |
| 3 Refrigeration and Air conditioning by stoecker & Jones.                |                                                                                                                                                                                                     |    |  |  |  |
| 4. Refrigeration and Air conditioning by Roy J Dossat Pearson.           |                                                                                                                                                                                                     |    |  |  |  |
| 5. Heating Ve                                                            | entilating and Air conditioning by Mcquiston.                                                                                                                                                       |    |  |  |  |

## **Online resources:**

# https://archive.nptel.ac.in/courses/112/105/112105129/

## **Course Outcomes:**

At the end of this course students will demonstrate the ability to understand the working principles of refrigeration and air-conditioning systems.

# **MECHATRONICS**

# **Course objectives:**

- Model and analyze mechatronic systems for an engineering application.
- Identify sensors, transducers and actuators to monitor and control a process or product.
- Develop PLC programs for an engineering application.
- Evaluate the performance of mechatronic systems.

| Module Name  | Contents                                                                                                                                                                                                                                                                                                                                                                     | No  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|              |                                                                                                                                                                                                                                                                                                                                                                              | of  |
|              |                                                                                                                                                                                                                                                                                                                                                                              | Hrs |
| Introduction | Electro-mechanical systems; Typical applications; Examples –<br>automobiles, home appliances, medical instruments, etc. Transduction<br>principles; Sensitivity, accuracy, range, resolution, noise sources;<br>Sensors for common engineering measurements – proximity, force,<br>velocity, temperature, etc.; Signal processing and conditioning;<br>Selection of sensors. | 8   |
| Actuators    | Pneumatic and hydraulic actuators; Electric motors including DC,                                                                                                                                                                                                                                                                                                             | 8   |
|              | AC, BLDC, servo and stepper motors; Solenoids and relays; Active                                                                                                                                                                                                                                                                                                             |     |
|              | materials – piezoelectric and shape memory alloys.                                                                                                                                                                                                                                                                                                                           |     |

# SET/ME/BT/E507 MECHATRONICS

| Machine                                                    | Microprocessors and their architecture; Memory and peripheral                          | 8  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------|----|
| Controls                                                   | interfacing; Programming; Microcontrollers; Programmable Logic                         |    |
|                                                            | Controllers; PLC principle and operation; Analog and digital                           |    |
|                                                            | input/output modules; Memory module; Timers, internal relays,                          |    |
|                                                            | counters and data handling; Industrial automation systems; Basic PLC                   |    |
|                                                            | programming; Industry kits (Arduino, Raspberry Pi, etc.).                              |    |
| <b>Control Theory</b>                                      | Basic control concepts; Feedback; Open and closed loop                                 | 8  |
| and Systems                                                | control; Concept of block diagrams; P, PI and PID controllers; Tuning                  |    |
|                                                            | the gain of controllers; System models, transfer functions, system                     |    |
|                                                            | response, frequency response; Root Locus method and Bode plots.                        |    |
| Computational                                              | Demonstration and projects using simulation software (e.g.,                            | 8  |
| Tools                                                      | Matlab, Scilab, ROBODK) for control systems and robotics.                              |    |
|                                                            | Total No. of Hrs                                                                       | 40 |
| Tex/References B                                           | ooks                                                                                   |    |
| 1 W. Bolton, "Mechatronics," Addison Wesley Longman, 2010. |                                                                                        |    |
| 2. G.K. McMillan,                                          | 2. G.K. McMillan, "Process/Industrial Instruments and Controls Handbook," McGraw-Hill, |    |

1999

### **Online resources:**

### https://archive.nptel.ac.in/courses/112/107/112107298/

### **Course outcomes:**

At the end of this course students will demonstrate the ability to

- Ability to recognize and analyze electro-mechanical systems in daily lives.
- Understand the role of sensors, actuators, and controls in mechatronic systems.
- Familiarity with control theory and controller design.
- Understand the measurement of various quantities using instruments, their accuracy & range, and the techniques for controlling devices automatically

# **ENGINEERING TRIBOLOGY**

- To expose the student to different types of bearings and bearing materials.
- To understand friction characteristics and power losses in journal bearings.
- To learn theory and concept about different types of lubrication.

|                                                                                             | SET/ME/BT/E508 ENGINEERING TRIBOLOGY                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Module<br>Name                                                                              | Contents                                                                                                                                                                                                                                                                                                                                                                                                                            | No<br>of<br>Hrs |
| Introductio<br>n to<br>tribology                                                            | Historical background, practical importance, and subsequent use in the field. Lubricants: Types and specific field of applications. Properties of lubricants, viscosity, its measurement, effect of temperature and pressure on viscosity, lubrication types, standard grades of lubricants, and selection of lubricants                                                                                                            | 8               |
| Friction<br>and Wear                                                                        | Origin, friction theories, measurement methods, friction of metals and<br>non-metals. Classification and mechanisms of wear, delamination theory,<br>debris analysis, testing methods and standards. Related case studies.                                                                                                                                                                                                          | 8               |
| Hydrodyna<br>mic journal<br>bearings                                                        | Friction forces and power loss in a lightly loaded journal bearing,<br>Petroff's equation, mechanism of pressure development in an oil film, and<br>Reynold's equation in 2D. Introduction to idealized journal bearing, load<br>carrying capacity, condition for equilibrium, Sommerfeld's number and<br>it'ssignificance; partial bearings, end leakages in journal bearing,<br>numerical examples on full journal bearings only. | 8               |
| Hydrostatic<br>lubrication<br>and bearing<br>materials                                      | Introduction to hydrostatic lubrication, hydrostatic step bearings, load<br>carrying capacity and oil flow through the hydrostatic step bearing,<br>numerical example, Commonly used bearings materials, and properties of<br>typical bearing materials. Advantages and disadvantages of bearing<br>materials.                                                                                                                      | 8               |
| Introductio<br>n to Surface<br>engineering                                                  | Concept and scope of surface engineering. Surface modification –<br>transformation hardening, surface melting, thermo chemical processes.<br>Surface Coating – plating, fusion processes, vapor phase processes.<br>Selection of coating for wear and corrosion resistance.                                                                                                                                                         | 8               |
|                                                                                             | Total No. of Hrs                                                                                                                                                                                                                                                                                                                                                                                                                    | 40              |
| <b>Tex/Referenc</b><br>1.Introduction<br>2. Engineering<br>3.Engineering<br>4. Introduction | to Tribology, B. Bhushan, John Wiley & Sons, Inc., New York, 2002<br>g Tribology, Prasanta Sahoo, PHI Learning Private Ltd, New Delhi, 2011.<br>Tribology, J. A. Williams, Oxford Univ. Press, 2005.<br>In to Tribology in bearings, B. C. Majumdar, Wheeler Publishing.                                                                                                                                                            |                 |

# **Online resources:**

https://archive.nptel.ac.in/courses/112/102/112102015/

# **Course outcomes:**

• Understand the basic concepts and importance of tribology.

- Evaluate the nature of engineering surfaces, their topography and surface characterization techniques.
- Analyze the basic theories of friction and frictional behavior of various materials.
- Select a suitable lubricant for a specific application.
- Compare different wear mechanisms.
- Suggest suitable material combination for tribological design.

# **CNC Machines and Programming**

- To expose the student to different of NC and CNC structure and important parts.
- To understand selection criteria of NC and CNC machines in manufacturing system.
- To learn theory and writing the part programming of CNC machines.

| SET/ME/BT/E509 CNC Machines and Programming |                                                                          |              |
|---------------------------------------------|--------------------------------------------------------------------------|--------------|
| Module Name                                 | Contents                                                                 | No of<br>Hrs |
| Module 1                                    | Introduction: Definition of NC, Applications of NC, Historical           | 8            |
|                                             | Developments in Automation, Classification of NC Systems, Comparison     |              |
|                                             | of NC and Conventional Machines, Advantages of NC                        |              |
| Module -II                                  | Constructional Details of CNC Machines, Design Considerations,           | 8            |
|                                             | Mechanical Elements, Structure, Guide ways and Slides, Guideway          |              |
|                                             | Elements, Transmission Systems, Spindle Unit, Coolant system,            |              |
|                                             | Lubrication System, Tool and work Changing Mechanisms, Electrical        |              |
|                                             | Elements, Drives, Sensors, Control Loops, Computing Elements/            |              |
|                                             | Firmware, Interpolators                                                  |              |
| Module -III                                 | Fundamentals of part Programming: Introduction, NC word, Writing a       |              |
|                                             | Part Program, Manual Part Programming Using Do Loops and Canned          |              |
|                                             | Cycles, Computer-Assisted Part Programming, Automatic Part Program       |              |
|                                             | Generation.                                                              |              |
| Module -IV                                  | Tooling for CNC Machines: Introduction Cutting Tools Qualified Tools     | 8            |
|                                             | Indexable Inserts, Tool Holders, Automatic Tool changer.                 |              |
| Module -V                                   | Maintains of CNC Machine Tools: Different Types of Machine Tools         | 8            |
|                                             | Maintenance, Systems and sub-systems of CNC Machines, Best               |              |
|                                             | Maintenance Practices, Maintenance Tools and Accessories Required        |              |
|                                             | During CNC Machine Tools, Maintenance Work, Daily Maintenance            |              |
|                                             | Check list For CNC Lathes, Causes for the failure of Electronics systems |              |
|                                             | in the CNC Machine Tools, Deviation from Normal Performance in CNC       |              |
|                                             | Machines.                                                                |              |

| Module - VI                                                              | Need for Automation in CNC Machines, Potential areas of automation,<br>Adaptive Control, Example of automation in product and manufacturing,<br>Disadvantages of Highly automated systems, low cost Automation. | 8  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                          |                                                                                                                                                                                                                 | 40 |
| Text Books &                                                             | Reference Books                                                                                                                                                                                                 |    |
| 1.                                                                       | Krar S. and Gill A., CNC: Technology and Programming, McGraw Hill                                                                                                                                               |    |
| 2. Koren Y., Computer Control of Manufacturing Systems, Tata McGraw Hill |                                                                                                                                                                                                                 |    |
| 3. Pressman R.S. and Williams J.E., Numerical Control and Computer-Aided |                                                                                                                                                                                                                 |    |
|                                                                          | Manufacturing, John Wiley & Sons                                                                                                                                                                                |    |
| 4.                                                                       | Chang C.H. and Melkanoff M.A., ,NC Machine Programming and Software                                                                                                                                             |    |
|                                                                          | Design, Prentice-Hall                                                                                                                                                                                           |    |
| 5. (                                                                     | NC Machines, M. Adithan, B.S. Pabla, New Age International Publishers                                                                                                                                           |    |

# **Course outcomes:**

- Understand the basic concepts and importance of NC and CNC machines
- Select a suitable of NC and CNC machines in manufacturing sysytem.
- Understand structure of part CNC programming.
- Able to write CNC part program.

# NANOTECHNOLOGY

- Understand the fundamentals of nanotechnology.
- Give a general introduction to different classes of nanomaterials.
- Improve their knowledge on various synthesis methods of nanomaterials.
- Understand characterization techniques involved in nanotechnology

|             | SET/ME/BT/E510 NANOTECHNOLOGY |          |
|-------------|-------------------------------|----------|
| Module Name | Contents                      | No<br>of |
|             |                               | Hrs      |

| Basics and Scale<br>of                                                                   | Introduction and scientific revolutions, Time and length scale in<br>structures, Definition of a nanosystem, Dimensionality and size | 8     |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------|
| Nanotechnology                                                                           | dependent phenomena, Surface to volume ratio, Fraction of surface                                                                    |       |
|                                                                                          | atoms and surface energy, Surface stress and surface defects,                                                                        |       |
|                                                                                          | Properties at nanoscale – optical, mechanical, electronic, and magnetic                                                              |       |
| Different                                                                                | Classification based on dimensionality, Quantum dots, wells and                                                                      | 8     |
| <b>Classes of</b>                                                                        | wires, Carbon-based nano materials - fullerences and buckyballs,                                                                     |       |
| Nanomaterials                                                                            | Carbon nanotubes and grapheme, Metal based nano materials –                                                                          |       |
|                                                                                          | Nanogold and Nanosilver, Metal oxide based nano materials,                                                                           |       |
| Court de contra de C                                                                     | Nanocomposites and nanopolymers, Biological nanomaterials                                                                            | 0     |
| Syntnesis of                                                                             | Chemical methods: Metal nanocrystals by reduction, Solvoinermal                                                                      | ð     |
| Nanomaterials                                                                            | synthesis and photochemical synthesis, Sonochemical routes and                                                                       |       |
|                                                                                          | chemical vapor deposition (CVD), Metal oxide chemical vapor                                                                          |       |
|                                                                                          | deposition (MOCVD)                                                                                                                   |       |
|                                                                                          | Physical methods: Ball milling, Electrodeposition techniques, Spray                                                                  |       |
|                                                                                          | pyrolysis and flame pyrolysis, DC/RF magnetron sputtering,                                                                           |       |
|                                                                                          | Molecular beam epitaxy (MBE)                                                                                                         |       |
| Fabrication and                                                                          | Nanofabrication: Photolithography and its limitation and electron                                                                    | 8     |
| Characterizatio                                                                          | beam lithography (EBL), Nanoimprinting and soft lithography                                                                          |       |
| n of                                                                                     | patterning, Characterization: Field emission scanning electron                                                                       |       |
| Nanostructures                                                                           | microscopy (FESEM) and environmental scanning electron                                                                               |       |
|                                                                                          | microscopy (ESEM), High resolution transmission electron                                                                             |       |
|                                                                                          | microscope (HRTEM), Scanning tunneling microscope (STM),                                                                             |       |
|                                                                                          | Surface enhanced raman spectroscopy (SERS), X-ray photoelectron                                                                      |       |
|                                                                                          | spectroscopy (XPS), Auger electron spectroscopy (AES), Rutherford                                                                    |       |
|                                                                                          | backscattering spectroscopy (RBS)                                                                                                    |       |
| A 10 / ·                                                                                 |                                                                                                                                      | 0     |
| Applications in                                                                          | Solar energy conversion and catalysis, Molecular electronics,                                                                        | 8     |
| Nanotechonolog                                                                           | architecture liquid crystalline system Linear and ponlinear optical                                                                  |       |
| У                                                                                        | and electro-optical properties. Applications - nanomaterials for data                                                                |       |
|                                                                                          | storage, Photonics and plasmonics, Chemical and biosensors,                                                                          |       |
|                                                                                          | Nanomedicine and nanobiotechnology, Nanotoxicology challenges                                                                        |       |
|                                                                                          | Total No. of Hrs                                                                                                                     | 40    |
| Text/References                                                                          | Books                                                                                                                                |       |
| 1. T. Pradeep, "A                                                                        | Textbook of Nanoscience and Nanotechnology", Tata McGraw Hill Educ                                                                   | ation |
| Pvt. Ltd., 2012                                                                          |                                                                                                                                      |       |
| 2. Hari Singh Nalwa, "Nanostructured Materials and Nanotechnology", Academic Press, 2008 |                                                                                                                                      |       |
| 3. C.Dupas, P.Houdy, M.Lahmani, "Nanoscience: Nanotechnologies and Nanophysics",         |                                                                                                                                      |       |
| Springer-Verlag Berlin Heidelberg, 2007                                                  |                                                                                                                                      |       |
| 4. A. S. Edelstein                                                                       | and R. C. Cammarata, "Nanomaterials: Synthesis, Properties and                                                                       |       |
| Applications", Inst                                                                      | itute of Physics Pub., 2001                                                                                                          |       |
|                                                                                          |                                                                                                                                      |       |

### **Online resources:**

### https://nptel.ac.in/courses/118102003

### **Course outcomes:**

• Deals understanding at an advanced level of Physics and Chemistry of Nanotechnological applications and mainly focus on the design and development of efficient innovative nanostructured materials prepared by various methodologies and physicochemical characterization for technological applications that can facilitate widespread commercialization and it also acquired an understanding of selected areas of nanoscience and technology for various applications at the frontiers of knowledge.

# **PYTHON**

## **Course objective:**

• When students complete Intro to Programming with Python, they will be able to: Build basic programs using fundamental programming constructs like variables, conditional logic, looping, and functions. Work with user input to create fun and interactive programs.

| SET/ME/BT/OE511 PYTHON     |                                                                                                                                                                                                                                                                                                                                                  |                 |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Module Name                | Contents                                                                                                                                                                                                                                                                                                                                         | No<br>of<br>Hrs |
| Introduction and<br>Basics | <ul> <li>Introduction: The Programming Cycle for Python, Python IDE,<br/>Interacting with Python Programs, Elements of Python, Type<br/>Conversion.</li> <li>Basics: Expressions, Assignment Statement, Arithmetic<br/>Operators, Operator Precedence, Boolean Expression.</li> </ul>                                                            | 8               |
| Conditionals and<br>Loops  | <ul> <li>Conditionals: Conditional statement in Python (if-else statement, its working and execution), Nested-if statement and Elif statement in Python,Expression Evaluation &amp; Float Representation.</li> <li>Loops: Purpose and working of loops, While loop including its working, For Loop, Nested Loops, Break and Continue.</li> </ul> | 8               |
| Function and               | <b>Function</b> : Parts of A Function, Execution of A Function, Keyword and Default Arguments, Scope Rules.                                                                                                                                                                                                                                      | 8               |

| Strings                                                                               | <ul> <li>Strings: Length of the string and perform Concatenation and<br/>Repeat operations in it, Indexing and Slicing of Strings.</li> <li>Python Data Structure: Tuples, Unpacking Sequences, Lists,<br/>Mutable Sequences, List Comprehension, Sets, Dictionaries.</li> <li>Higher Order Functions: Treat functions as first-class Objects,<br/>Lambda Expressions.</li> </ul>                                                                                                                                                          |    |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Sieve of                                                                              | Sieve of Eratosthenes: generate prime numbers with the help of                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8  |
| Eratosthenes &                                                                        | an algorithm given by the Greek Mathematician named                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| File I/0                                                                              | Eratosthenes, whose algorithm is known as Sieve of Eratosthenes.<br><b>File I/O:</b> File input and output operations in Python Programming.<br><b>Exceptions and Assertions Modules:</b> Introduction, Importing<br>Modules. Abstract Data Types, Abstract data types and ADT<br>interface in Python Programming.<br><b>Classes:</b> Class definition and other operations in the classes,<br>Special Methods (such as init, str, comparison methods and<br>Arithmetic methods etc.), Class Example, Inheritance, Inheritance<br>and OOP. |    |
| Iterators &                                                                           | Iterators & Recursion: Recursive Fibonacci, Tower Of Hanoi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8  |
| Recursion                                                                             | Search: Simple Search and Estimating Search Time, Binary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5  |
|                                                                                       | Search and Estimating Binary Search Time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                                                                       | Sorting & Merging: Selection Sort, Merge List, Merge Sort,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                                                                       | Higher Order Sort.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40 |
|                                                                                       | Total No. of Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 |
| Text/References Books                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| Philips, "Python 3 Object Oriented Programming", PACKT Publishing, 2nd Edition, 2015. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |

2. Michael H.Goldwasser, David Letscher, "Object Oriented Programming in Python", Prentice Hall, 1st Edition, 2007.

# **Online resources:**

- 1. https://realpython.com/python3-object-oriented-programming/
- 2. https://python.swaroopch.com/oop.html
- 3. <u>https://python-textbok.readthedocs.io/en/1.0/Object\_Oriented\_Programming.html</u>
- 4. <u>https://www.programiz.com/python-programming/</u>

# **Course outcomes:**

• Setup python to develop simple applications.

- Make use of the python programming language to construct basic programs.
- Knowhow to use collections such as list, tuple, range, dictionary and sets.
- Make use of functions, classes and objects from those classes.
- Understand the concepts of inheritance and polymorphism for code reusability and extensibility.
- Write robust code using exception handling.
- Create and animate a variety of shapes and develop an application with graphical user interface (GUI).
- Extend the knowledge of python programming to build successful career in software development.

| SE                          | T/SE/BT/OE512. INDUSTRIAL ENGINEERING & MANAGEMENT                                                                                       |             |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Module Name                 | Contents                                                                                                                                 | No. of Hrs. |
| Definition of<br>Industrial | Organization: Factory system, principles of organization, types of organization and their selection. Plant Lawout: Site selection, types | 5           |
| Engineering                 | of layout factors affecting layout plant building flavibility and                                                                        |             |
|                             | or layout, factors affecting layout, plant bunding, flexionity and                                                                       |             |
| Manufaturing                | expandability, materials handling devices.                                                                                               | E           |
| Cost Analysis &             | Manufacturing Cost Analysis: Fixed & variable costs, Direct,                                                                             | 3           |
| Materials                   | indirect & overhead costs, & Job costing, Recovery of overheads,                                                                         |             |
| Management                  | Standard costing, Cost control, Cost variance Analysis -Labor,                                                                           |             |
|                             | material, overhead in volume, rate & efficiency, Break even                                                                              |             |
|                             | Analysis, Marginal costing & contribution, Numerical. Materials                                                                          |             |
|                             | Management : Definition and purpose of inventory, Inventory cost,                                                                        |             |
|                             | Inventory systems- Single and multi period, EOQ, EBQ, Fixed order                                                                        |             |
|                             | quantity models, Fixed time period models, Inventory control and                                                                         |             |
|                             | Supply chain management (SCM)- ABC Inventory planning,                                                                                   |             |
|                             | Numerical.                                                                                                                               |             |
| Quality                     | Quality Management: Total quality management, Quality                                                                                    | 6           |
| Management                  | specifications and quality costs, ISO 9000 and ISO 14000, Six                                                                            |             |
|                             | sigma- methodology and tools, Statistical quality control (SQC),                                                                         |             |
|                             | Variables & Attributes- X, R, P & C - charts, Acceptance sampling,                                                                       |             |
|                             | OC - curve,                                                                                                                              |             |
| Production                  | Production Planning & Control (PPC) : Definition, objectives and                                                                         | 8           |
| Planning &<br>Control (BBC) | importance of PPC, Functions and components of PPC, Demand                                                                               |             |
|                             | management- Simple & Weighted moving average methods of                                                                                  |             |
|                             | forecasting, Aggregate planning techniques- Basic concepts, Master                                                                       |             |
|                             | production schedule (MPS), Introduction to JIT, KANBAN, BIN                                                                              |             |
|                             | Cards, CPM and PERT, Numerical.                                                                                                          |             |
| Management                  | Management Information Systems (MIS): What is MIS? Importance                                                                            | 6           |
| Information                 | of MIS, Organizational & information system structure, Role of MIS                                                                       |             |
| Systems (MIS)               | in decision making. Data flow diagram. Introduction to systems                                                                           |             |
|                             | analysis & design, Organizing information systems, Product Design                                                                        |             |
|                             | and Development: Various Approaches, Product life cycle.                                                                                 |             |

|                                                                    | Total No. of Hours | 30 |
|--------------------------------------------------------------------|--------------------|----|
| Reference Books                                                    |                    |    |
| 1. Operations Management- Jacobs, Chase & Aquilano, Mc Graw Hill   |                    |    |
| Text Books:                                                        |                    |    |
| 1. Operations Management - Schroeder, McGraw Hill ISE              |                    |    |
| 2. Industrial & Systems Engineering - Turner, MIZE, CHASE, Prentic | e Hall             |    |
| 3. Production & Operations Management - Chary, TMH, New Delhi.     |                    |    |
| 4. Industrial Engineering & Operations Management – S.K.Sharma &   | Savita Sharma,     |    |
| S.K.Kataria & Sons                                                 |                    |    |

# NUMERICAL METHODS IN ENGINEERING

- To enhance the problem solving skills of engineering students using an extremely powerful problem solving tool namely numerical methods.
- The tool is capable of handling large system of equations, non-linearities and complicated geometries that are not uncommon in engineering practice and that are often impossible to solve analytically.

| SET/ME/BT/OE513 NUMERICAL METHODS IN ENGINEERING            |                                                                                                                                                                                                                                                                                                                                                                           |                 |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Module Name                                                 | Contents                                                                                                                                                                                                                                                                                                                                                                  | No<br>of<br>Hrs |
| Data, its<br>Arrangements<br>and Measures                   | Introduction: Data, Data Array; Frequency Distribution Construction<br>and Graphic representation. Mean, median, mode and standard<br>deviation.                                                                                                                                                                                                                          | 8               |
| Probability and<br>sampling<br>Distributions                | Introduction: Definition probability and Probability Distribution;<br>Conditional probability; Random variables, Poisson, Normal and<br>Binomial distributions.<br>Introduction: Fundamentals of Sampling, Large samples, small<br>samples; Normal sampling distributions; Sampling distribution of the<br>means, t-Distribution, F-Distribution, Chi-square Distribution | 8               |
| Solution of<br>Algebraic and<br>Transcendental<br>Equations | Bisection method, iteration method, Method of false position, Newton<br>-Raphson method, solution of systems of non linear equations.Gauss<br>Elimination method (fall and banded symmetric and unsymmetric<br>systems), Gauss Jordon method. Eigen value problems (Power                                                                                                 | 8               |

|                       | method only).                                                          |    |
|-----------------------|------------------------------------------------------------------------|----|
|                       |                                                                        |    |
| Interpolation         | Finite difference, forward, backward and central difference,           | 8  |
| Method                | Difference of polynomial, Newton's formulae for interpolation,         |    |
|                       | central difference interpolation formulae, Interpolation with unevenly |    |
|                       | spaced points, Newton's general interpolation formula, interpolation   |    |
|                       | by iteration                                                           |    |
|                       |                                                                        |    |
| Numerical             | Numerical differentiation, maximum and minimum values of a             | 8  |
| Differentiation       | tabulated function; Numerical Integrationtrapezoidal rule,             |    |
| and Integration       | Simpson1/3 rule, Simpsons 3/8 rule, Newton-cots integration            |    |
|                       | formulae; Euler-Meclaurin formula, Gaussian integration(One            |    |
|                       | dimensional only).                                                     |    |
|                       | Total No. of Hrs                                                       | 40 |
| Tex/References Books  |                                                                        |    |
| 1. S. S. Sastry, Intr | oductory methods of numerical analysis by: Prentice Hall of India      |    |

- 2. V. RajaRaman, Computer Oriented Numerical Methods-
- 3. S.D. Conte, Cari De Boor, Elementary Numerical Analysis, Mc Graw Hill.
- 4. B. Cornahn, Applied Numerical Methods, John Wiley.

5. Richard I. Levin, S. David., Rubin Statistics for Management, Pearson.

# **Online resources:**

# https://archive.nptel.ac.in/courses/127/106/127106019/

# **Course outcomes:**

- Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to otherwise intractable mathematical problems.
- Apply numerical methods to obtain approximate solutions to mathematical problems.
- Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of differential equations.
- Analyze and evaluate the accuracy of common numerical methods.

# HUMAN RESOURCE MANAGEMENT

- To enable the students to understand the HR Management and system at various levels in general and in certain specific industries or organizations.
- To help the students focus on and analyse the issues and strategies required to select and develop manpower resources.
- To develop relevant skills necessary for application in HR related issues.

• To Enable the students to integrate the understanding of various HR concepts along with the domain concept in order to take correct business decisions

|                | SET/ME/BT/OE514 HUMAN RESOURCE MANAGEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Module<br>Name | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No<br>of<br>Hrs |
| Module 1       | Human Resource Planning: Need and Importance of Human Resource<br>Planning- Process of Human Resource Planning-Factors affecting Human<br>Resource Planning Process- Forecasting Techniques-Demand and Supply<br>Forecasting in Planning- Job Analysis Process and Methods-Job Design-<br>Job Description- Job Specification- Job Evaluation.                                                                                                                                                                                                                                                                                                                | 8               |
| Module 2       | Recruitment: Definition, Importance and Process of Recruitment-Current<br>Trends in Recruitment, Recruitment Source-Internal and External Sources<br>of Selection-Selection Process Methods of Selection-Types of Tests-Types<br>of Interview-Induction Types of Induction and Importance of Induction-<br>Training and Development-Needs of Training- Type of Training and<br>Types of Training Methods-Process of Training- TNA (Training Need<br>analysis) Need and Benefits                                                                                                                                                                              | 8               |
| Module 3       | Motivation: Nature and Types of Motivation -Employee Motivation Need-<br>Process of Motivation -Theories of Motivation-Goal Setting and Career<br>Planning Need and Importance- Role of Human Resource in Textile<br>Industry- Human Resource Skill Requirements in Textile Industry-Human<br>Resource Planning in Textile Industry                                                                                                                                                                                                                                                                                                                          | 8               |
| Module 4       | HR & MIS: Need, purpose, objective and role of information system in<br>HR, Applications in HRD in various industries (e.g. manufacturing R&D,<br>Public Transport, Hospitals, Hotels and service industries Strategic HRM:<br>Role of Strategic HRM in the modern business world, Concept of Strategy,<br>Strategic Management Process, Approaches to Strategic Decision Making;<br>Strategic Intent – Corporate Mission, Vision, Objectives and Goals Labor<br>Laws & Industrial Relations: Evolution of IR, IR issues in organizations,<br>Overview of Labor Laws in India; Industrial Disputes Act, Trade Unions<br>Act, Shops and Establishments Act 10 | 8               |
| Module 5       | Organizational Structure &Design: Structure, size, technology,<br>Environment of organization; Organizational Roles & conflicts: Concept<br>of roles; role dynamics; role conflicts and stress.<br>Leadership: Concepts and skills of leadership, Leadership and managerial<br>roles, Leadership styles and contemporary issues in leadership.<br>Power and Politics: Sources and uses of power; Politics at workplace,                                                                                                                                                                                                                                      | 8               |

|                     | Tactics and strategies.                                                |      |
|---------------------|------------------------------------------------------------------------|------|
|                     | Total No. of Hrs                                                       | 40   |
| <b>Text/Referen</b> | nces Books                                                             |      |
| 1. KAsv             | vathappa- Human Resource and Personnel Management -Publisher Mc Graw H | Hill |
| Educa               | tion 8th Edition.                                                      |      |
| 2. P. Sub           | ba Rao -Human Resource Management – Himalayan Publication – Revised    |      |
| Editio              | n.                                                                     |      |
| 3. Neo, I           | Hollenbeck, Gerhart& Wright – Fundamentals of Human Resource           |      |
| Mana                | gementPublisher Mc Graw Hill Education 3rd Edition.                    |      |
|                     |                                                                        |      |
|                     |                                                                        |      |
|                     |                                                                        |      |

# **Online resources:**

# https://archive.nptel.ac.in/courses/110/105/110105069/

## **Course outcomes:**

- To develop the understanding of the concept of human resource management and to understand its relevance in organizations.
- To develop necessary skill set for application of various HR issues.
- To analyse the strategic issues and strategies required to select and develop manpower resources.
- To integrate the knowledge of HR concepts to take correct business decisions.

# MACHINE & MECHANISM LAB

# SET/ME/BT/C504 MACHINE & MECHANISM LAB

## List of Experiments:

- 1. Study of simple linkers/models/mechanisms.
- 2. Experiment on Mechanism.
- 3. Design of 4-bar mechanism and its inversion.
- 4. Synthesis of Slider Crank Mechanism.
- 5. Study of straight line mechanism.
- 6. Experiment on Velocity acceleration.
- 7. Study of Ackerman-Devis Steering Mechanism.
- 8. Experiment on Gears (tooth profile, interference etc.).
- 9. Experiment on Gear trains.
- 10. Experiment on cams.
- 11. Experiment on Governors.
- 12. Experiment on critical speed of shaft (whirling of shaft).
- 13. Experiment on Gyroscope.
- 14. Experiment on Vibration (spring).
- 15. Balancing of Rotating and Reciprocating Masses.

Note: At least ten experiments should be performed from the above list. Five experiment from the first eight and five from the remaining list.

# **REFRIGERATION & AIR CONDITIONING LAB**

### SET/ME/BT/C505 REFRIGERATION & AIR CONDITIONING LAB

### **List of Experiments:**

1. Experiment on refrigeration test ring and calculation of various performance parameters.

- 2. To study different types of expansion devices used in refrigeration system.
- 3. To study different types of evaporators used in refrigeration systems.
- 4. To study basic components of air-conditioning system.
- 5. Experiment on air-conditioning test rig & calculation of various performance parameters.
- 6. To study air washers.
- 7. Study of window air conditioner.
- 8. Study & determination of volumetric efficiency of compressor.
- 9. Experiment on Ice-plant.
- 10. Experiment on two stage Reciprocating compressor for determination of volumetric

efficiency, PV diagram and effect of inter cooling.

11. Study of Hermetically sealed compressor.

12. Experiment on Desert coolers.

Note: At least eight experiments should be performed from the above list.

# SET/ME/BT/S506 Mini Project-I

The student will identify the local problem/innovative ideas and prepare a review report/paper with analyse of the tentative solution.

### VI Semester

(Click on subject for detail syllabus.)

| S. No. | Category                                                   | Code           | Course Title                                           | L | Т  | Р | Contact<br>Hrs./W<br>eek | Credits |
|--------|------------------------------------------------------------|----------------|--------------------------------------------------------|---|----|---|--------------------------|---------|
| 10.    | 2                                                          | SET/ME/BT/C601 | Machine Design-II                                      | 3 | 1  | - | 4                        | 4       |
| 11.    | Core<br>Subiects                                           | SET/ME/BT/C602 | Fluid Machinery                                        | 3 | 1  | - | 4                        | 4       |
| 12.    |                                                            | SET/ME/BT/C603 | Heat & Mass Transfer                                   | 3 | 1  | - | 4                        | 4       |
| 13.    |                                                            |                | <sup>@</sup> Program Elective-2                        | 3 | 1  | - | 4                        | 4       |
| 14.    | Open<br>Elective/<br>Inter-<br>disciplin<br>ary<br>Subject |                | #Open Elective-2                                       | 3 | 1  |   | 4                        | 4       |
| 15.    | Core<br>Subjects                                           | SET/ME/BT/C604 | Heat & Mass Transfer<br>Lab.                           | - | -  | 1 | 2                        | 1       |
| 16.    | Based<br>Labs                                              | SET/ME/BT/C605 | Fluid Machinery Lab                                    |   |    | 1 | 2                        | 1       |
| 17.    | Commun<br>ication<br>skills/CC                             | SET/EC/BT/M606 | * Communication Skills<br>Course/ Technical<br>Seminar | - | -  | 1 | 4                        | 2       |
| 18.    | Skill Course                                               | SET/ME/BT/S607 | Mini Project-II                                        | - | -  | 1 | 4                        | 2       |
|        |                                                            | ΤΟΤΑ           |                                                        |   | 15 | 5 | 4                        | 32      |

(a) Course offered by the department from the Program Elective- II list as given below. #Courses offered by any other department of School of Engineering and Technology. \*University will prepare communication course in Modern/Indian languages from which student will select one language course. The course will be more on applied side with giving students a chance to develop their soft skills. In case no syllabus is prepared by the university then Technical Seminar course will be offered.

|                      | S. No. | Code               | Course Title                         |
|----------------------|--------|--------------------|--------------------------------------|
|                      | 5.     | SET/ME/BT/E60<br>8 | Operation Research Techniques        |
| Program Elective- II | 6.     | SET/ME/BT/E60<br>9 | Advance Machine Tools and operations |
|                      | 7.     | SET/ME/BT/E61<br>0 | Maintenance Engineering              |
|                      | 8.     | SET/ME/BT/E61<br>1 | Smart Materials                      |

|                 | S. No. | Code                | Course Title                  |
|-----------------|--------|---------------------|-------------------------------|
|                 | 5.     | SET/ME/BT/OE<br>612 | Machine Learning              |
| Open Elective-2 | 6.     | SET/ME/BT/OE<br>613 | Entrepreneurs Essential       |
|                 | 7.     | SET/ME/BT/OE<br>614 | Work Study and Ergonomics     |
|                 | 8.     | SET/ME/BT/OE<br>615 | Flexible Manufacturing System |

# **MACHINE DESIGN-II**

# **Objectives:**

1. To understand safety-critical design of machine components using failure criteria based on mechanics of materials

2. To understand the origins, nature and applicability of empirical design principles, relevant codes, standards and design guidelines for different machine elements

| SET/ME/BT/C601 MACHINE DESIGN-II |                                                                        |       |  |
|----------------------------------|------------------------------------------------------------------------|-------|--|
| Module Name                      | Contents                                                               | No of |  |
|                                  |                                                                        | Hrs   |  |
| Gears                            | Spur Gears: Tooth forms, System of gear teeth, contact ratio,          | 10    |  |
|                                  | Standard proportions of gear systems, Interference in involutes gears, |       |  |
|                                  | Backlash, Selection of gear materials, Gear manufacturing methods,     |       |  |
|                                  | Design considerations, Beam strength of gear tooth, Dynamic tooth      |       |  |
|                                  | load, Wear strength of gear tooth, Failure of gear tooth, Design of    |       |  |
|                                  | spur gears, AGMA and Indian standards.                                 |       |  |
|                                  | Helical Gears: Terminology, Proportions for helical gears, force       |       |  |
|                                  | analysis, Beam strength and wear strength of helical gears,            |       |  |
|                                  | herringbone gears, crossed helical gears, Design of helical gears      |       |  |
|                                  | Worm Gears: Types of worms, Terminology, Gear tooth proportions,       |       |  |
|                                  | Efficiency of worm gears, Heat dissipation in worm gearing, force      |       |  |
|                                  | analysis, Strength and wear tooth load for worm gears, Design of       |       |  |
| Dolling                          | Types of ball bearing. Thrust ball bearing. Types of roller bearing    | 10    |  |
| Contact                          | Selection of radial hall bearing bearing life. Selection of roller     | 10    |  |
| Rooring                          | bearings. Dynamic equivalent load for roller contact bearing under     |       |  |
| Dearing                          | constant and variable loading Reliability of Bearing Selection of      |       |  |
|                                  | rolling contact hearing Lubrication of hall and roller hearing         |       |  |
|                                  | Mounting of hearing                                                    |       |  |
| Sliding                          | Types Selection of bearing Plain journal bearing Hydrodynamic          | 6     |  |
| Contact                          | lubrication. Properties and materials. Lubricants and lubrication.     | v     |  |
| Bearing                          | Hydrodynamic journal bearing. Heat generation. Design of journal       |       |  |
| Dearing                          | bearing. Thrust bearing pivot and collar bearing. Hvdrodynamic         |       |  |
|                                  | thrust bearing                                                         |       |  |
| Design of IC                     | Selection of type of IC engine, General design considerations, Design  | 8     |  |
| Engine Parts                     | of Cylinder and cylinder head; Design of piston, piston ring and       |       |  |
|                                  | gudgeon pin; Design of connecting rod; Design of centre crankshaft     |       |  |
| Statistical                      | Frequency Distribution, Characteristic of frequency curves,            | 6     |  |
| Considerations                   | Probability distribution, Normal curve, Design and Natural             |       |  |
| in Design                        | Tolerances, reliability, Probabilistic approach to Design              |       |  |
|                                  | Total no ofHrs                                                         | 40    |  |
| References                       |                                                                        |       |  |
| 1. Mechanical Er                 | ngineering Design – Joseph E Shigely, McGraw Hill Publications.        |       |  |
| 2. Design of Mac                 | hine Elements V B Bhandari, Tata McGraw Hill Co.                       |       |  |

3. Machine design M F Spott, Prentice Hall India

Text books:

Machine Design Maleev and Hartman, CBS .
 Machine design Black & Adams, McGraw Hill

### **Online Resources:**

1 https://archive.nptel.ac.in/courses/112/105/112105124/

# **Course Outcomes:**

At the end of this course students will demonstrate the ability to

- 1. Principles of machine elements and how they can be combined to function as a system
- 2. Ability to analyse mechanical systems

# **FLUID MACHINERY**

# **Objectives:**

To obtain the velocity and pressure variations in various types of simple flows
 To analyse the flow in water pumps and turbines.

|                      | SET/ME/BT/C602 FLUID MACHINERY                                                          |       |  |  |
|----------------------|-----------------------------------------------------------------------------------------|-------|--|--|
| Module               | Contents                                                                                | No of |  |  |
| Name                 |                                                                                         | Hrs   |  |  |
| Impact of jet        | Application of momentum and momentum equation to flow through                           | 8     |  |  |
|                      | hydraulic machinery, Euler's fundamental equation.Impact of jet:                        |       |  |  |
|                      | Introduction to hydrodynamic thrust of jet on a fixed and moving                        |       |  |  |
|                      | surface (flat & curved), effect of inclination of jet with the surface                  |       |  |  |
|                      | Hydraulic Turbines: Classification of turbines, Impulse turbines,                       |       |  |  |
|                      | constructional details, velocity triangles, power and efficiency                        |       |  |  |
|                      | calculations, governing of Pelton wheel                                                 |       |  |  |
| Reaction             | Fransis and Kaplan turbines, constructional details, velocity triangles,                | 8     |  |  |
| Turbines             | power and efficiency calculations, degree of reaction, draft tube,                      |       |  |  |
|                      | cavitation in turbines, principles of similarity, unit and specific                     |       |  |  |
|                      | quantities, specific speed, performance characteristics, selection of                   |       |  |  |
|                      | water turbines, bulb Turbines                                                           | 0     |  |  |
| Centrifugal          | Classifications of centrifugal pumps, vector diagram, work done by                      | 8     |  |  |
| Pumps                | impeller, efficiencies of centrifugal pumps, specific speed, model                      |       |  |  |
|                      | testing, cavitation and separation, performance characteristics Net                     |       |  |  |
| Desitive             | Positive suction head<br>Designeesting number theory slip and coefficient of discharges | 0     |  |  |
| Positive             | indicator diagram affact and acceleration work saved by fitting air                     | ð     |  |  |
| Displacement         | vessels, comparison of centrifugal and reciprocating pumps, positive                    |       |  |  |
| rumps                | rotary numps. Gear and Vane numps, performance characteristics                          |       |  |  |
| Othor                | Other Machines: Hydraulic accumulator. Intensifier, Hydraulic press                     | 8     |  |  |
| Machines             | Lift and Cranes, theory of hydraulic coupling and torque converters                     | 0     |  |  |
| Machines             | performance characteristics Water Lifting Devices. Hydraulic ram                        |       |  |  |
|                      | Jet pumps. Airlift pumps, water distribution systems                                    |       |  |  |
|                      | Total no ofHrs                                                                          | 40    |  |  |
| Text Books           |                                                                                         | -     |  |  |
| 1. Fluid Mecha       | nics and Hydraulic Machines by S C Gupta, Pearson                                       |       |  |  |
| 2 Fundamentals       | s of Fluid Mechanics by Munson, Pearson                                                 |       |  |  |
| 3 Hydraulic Ma       | achines by JagdishLal, Metropolitan book co pvt ltd                                     |       |  |  |
| <b>References Bo</b> | oks                                                                                     |       |  |  |
| 1 Hydraulic Ma       | achines: Theory & Design, V P Vasandhani, Khanna Pub                                    |       |  |  |
| 2 Hydraulic Ma       | achines by R K Rajput, S Chand & co Ltd                                                 |       |  |  |
| 3 Hydraulic Ma       | achines by D S Kumar                                                                    |       |  |  |

# **Online Resources:**

1. https://onlinecourses.nptel.ac.in/noc22\_ce85/preview

### **Course Outcomes:**

At the end of this course students will demonstrate the ability to

1. Mathematically analyze simple flow situations

2. Evaluate the performance of various pumps and turbines.

# HEAT & MASS TRANSFER

# **Objectives:**

1. Build a solid foundation in heat transfer, exposing students to the three basic modes namely conduction, convection and radiation.

2. Rigorous treatment of governing equations and solution procedures for the three modes, along with solution of practical problems using empirical correlations.

3. The course will also briefly cover boiling and condensation heat transfer, and the analysis and design of heat exchangers.

|              | SET/ME/BT/C603 HEAT & MASS TRANSFER                                        |        |
|--------------|----------------------------------------------------------------------------|--------|
| Module       | Contents                                                                   | No. of |
| Name         |                                                                            | Hrs.   |
| Introduction | Concepts of heat flows: conduction, convection and radiation, effect       | 8      |
| to Heat      | of temperature on thermal conductivity of materials, introduction to       |        |
| Transfer     | combined heat transfer. Conduction: One-dimensional general heat           |        |
| and          | conduction equation in the Cartesian, cylindrical and spherical            |        |
| Conduction   | coordinates Initial and boundary conditions. Steady State One-             |        |
|              | dimensional Heat conduction: Composite Systems in rectangular,             |        |
|              | cylindrical and spherical coordinates with and without energy              |        |
|              | generation, thermal resistance concept, Analogy between heat and           |        |
|              | electricity flow, thermal contact resistance, Overall heat transfer        |        |
|              | coefficient, critical thickness of insulation.                             |        |
| Fins and     | Fins: Types of fins, Fins of uniform cross-sectional area, errors of       | 6      |
| Transient    | measurement of temperature in thermometer wells. Transient                 |        |
| Conduction   | conduction: Transient heat conduction Lumped capacitance method,           |        |
|              | unsteady state heat conduction in one dimension only, Heisler charts.      |        |
| Natural and  | Forced Convection: Basic concepts, hydrodynamic boundary layer,            | 8      |
| Forced       | thermal boundary layer, flow over a flat plate, flow across a single       |        |
| Convection   | cylinder and a sphere, flow inside ducts, empirical heat transfer          |        |
|              | relations, relation between fluid friction and heat transfer, liquid metal |        |
|              | heat transfer. Natural Convection: Physical mechanism of natural           |        |
|              | convection, buoyant force, and empirical heat transfer relations for       |        |
|              | natural convection over vertical planes and cylinders, horizontal plates   |        |
|              | and cylinders and sphere.                                                  |        |
| Radiation    | Thermal Radiation: Basic radiation concepts, radiation properties of       | 8      |
|              | surfaces, black body radiation laws, shape factor, black-body radiation    |        |
|              | exchange, Radiation exchange between non-blackbodies in an                 |        |

|              | enclosure, Infinite parallel planes, radiation shields                                                                                                                                                                                                                                                                              |    |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Heat         | Heat Exchanger: Types of heat exchangers, fouling factors, overall                                                                                                                                                                                                                                                                  | 10 |
| Exchanger    | heat transfer coefficient, logarithmic mean temperature difference                                                                                                                                                                                                                                                                  |    |
| and          | (LMTD) method, effectiveness-NTU method, compact heat                                                                                                                                                                                                                                                                               |    |
| Introduction | exchangers.                                                                                                                                                                                                                                                                                                                         |    |
| to Mass      | Condensation and Boiling: Introduction to condensation phenomena,                                                                                                                                                                                                                                                                   |    |
| Transfer     | heat transfer relations for laminar film condensation on vertical<br>surfaces and on a horizontal tube, boiling modes: pool boiling curve,<br>forced convective boiling.<br>Mass Transfer: Introduction: Fick's law of diffusion, steady state<br>equimolar counter diffusion, steady state diffusion though a stagnant<br>gas film |    |
|              | Total No. ofHours                                                                                                                                                                                                                                                                                                                   | 40 |
|              | Total No. officurs                                                                                                                                                                                                                                                                                                                  | 40 |

## **Text Books and References:**

1. Elements of Heat transfer by Cengel, TMH.

2. Heat and mass transfer, M.Thirumaleswar, Pearson.

3. Fundamentals of Heat & Mass Transfer by Incropera Wiley India.

4. Heat & Mass Transfer by Khurmi, Schand, New Delhi

### **Online Resources:**

1 https://onlinecourses.nptel.ac.in/noc22\_ch65/preview

## **Course Outcomes:**

At the end of this course students will demonstrate the ability to

1. Formulate and analyze a heat transfer problem involving any of the three modes of heat transfer.

2. Obtain exact solutions for the temperature variation using analytical methods where possible or employ approximate methods or empirical correlations to evaluate the rate of heat transfer

# **OPERATION RESEARCH TECHNIQUES**

# **Objectives:**

1. To provide knowledge on machines and related tools for manufacturing various components.

2. To understand the relationship between process and system in manufacturing domain.

3. To identify the techniques for the quality assurance of the products and the optimality of the process in terms of resources and time management.

|              | SET/ME/BT/E608 OPERATION RESEARCH TECHNIQUES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|
| Module       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No. of |  |  |
| Name         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hrs.   |  |  |
| Linear       | Basics of Operations Research, Introduction & Scope, Problem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9      |  |  |
| Programm     | formulation, Graphical Method, Simplex methods, primal & dual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |  |  |
| ing          | problem sensitivity analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |  |  |
| Transport    | .Introduction,Initial Basic Feasible solution, N-W corner cell method,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9      |  |  |
| ation &      | least cost method, VAM method, Test for optimality, stepping stone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |  |  |
| Assignmen    | method, MODI method, Degeneracy method, unbalance transportaon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |  |
| t            | problem, maximization transportain problem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |  |  |
| problems.    | Classification of assignment problems, minimization type problems,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |  |  |
|              | Hungarian method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |  |  |
| <b></b>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |  |  |
| Decision     | Formulation of games, two person-Zero sum game, games with and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1      |  |  |
| theory and   | without saddle point, Graphical solution (2x n, m x 2 game), dominance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |  |  |
| Game         | property.Duality, PRIMAL-DUAL relations-its solution, shadow price,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
| Theory       | economic interpretation, dual-simplex, post-optimality & sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |  |  |
|              | analysis, problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |  |  |
| Queuing      | Queuing system and their characteristics. The M/M/I Queuing system,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6      |  |  |
| Theory       | Steady state performance analyzing of M/M/ I and M/M/C queuing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |  |
| and          | model. Network construction, determining critical path, floats,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |  |  |
| PERI-        | scheduling by network, project duration, variance under probabilistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |  |  |
| СРМ          | models, prediction of date of completion, crashing of simple networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |  |  |
| lechnique    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |  |  |
| S<br>S: L4:  | The first free designs of simple time and the group of the second s | 0      |  |  |
| Simulation   | introduction, design of simulation, models & experiments, model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9      |  |  |
| and          | validation massage concretion time flow mashanism Manta Carla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |  |  |
| Decision     | validation, process generation, time now mechanism, Monte Carlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |  |  |
| Ineory       | mathada, ita annliantiana in industrias, mahlama, SIMON madal turnas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |  |  |
|              | methods- its applications in industries, problems. SilviON model types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |  |  |
|              | of decision making environment, certainty risk uncertainty decision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|              | of decision making environment- certainty, fisk, uncertainty, decision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |  |  |
|              | making with utilities problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |  |
|              | naking with attracts, problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |  |  |
|              | Total no. of Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40     |  |  |
| References I | Book                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |  |  |

1. Operations Research, Taha H. A, Pearson.

2. Introduction to operation research: Theory and Applications, Springer BSP, Hyderabad.

3. Operations Research, S D Sharma, KedarnathRamnath

## TextBooks

1. Operations Research: Principles and practice: Ravindran, Phillips & Solberg, Wiley.

2. Operation Research, AM Natarajan, P.Balasubramani, ATamilaravari, Pearson

### **Online Resources:**

1 https://onlinecourses.nptel.ac.in/noc20\_mg06/preview

# **Course Outcomes:**

At the end of this course students will demonstrate the ability to

1. To provide knowledge on production management techniques that develop and establish relationship between market demand and production capability.

2. To understand the operation management: Resource planning and their utility

3. To understand the scientific approach and tools and techniques that assure market

competitiveness by ensuring the quality, cost and time

# **Advance Machine Tools and Operations**

# **Objectives:**

1. To develop a solution oriented approach by in depth knowledge of Machine Tool Design.

2. To address the underlying concepts, methods and application of Machine Tool Design.

| SET/ME/BT/E609 Advance Machine Tools and Operations |                                                                      |        |  |
|-----------------------------------------------------|----------------------------------------------------------------------|--------|--|
| Module                                              | Contents                                                             | No. of |  |
| Name                                                |                                                                      | Hrs.   |  |
| Introduction                                        | General requirements to machine tools, Machine tool design           | 9      |  |
|                                                     | recommendations, Classification of motions to shape surface, Machine |        |  |
|                                                     | tool drives for rectilinear motion, Periodic motion, reversing       |        |  |
|                                                     | motion etc.Kinematics or gearing diagram of Lathe, drilling Machine, |        |  |
|                                                     | Milling Machine etc. Main. drive andfeed drive, principles           |        |  |
|                                                     | specification of Machine tool.                                       |        |  |
| Design of                                           | Methods to determine transmission ratios for drives,. Development of | 9      |  |
| Kinematics                                          | Kinematics scheme, minimum of transmission groups, Determination     |        |  |
| Scheme                                              | of number of teeth on gears.                                         |        |  |
|                                                     | General requirement Design of zAQTgear trains, speed boxes types,    |        |  |
|                                                     | speed changing devices, Feed boxes characteristics of feed           |        |  |
|                                                     | mechanism, types of Rapid traverse mechanisms, variable devices.     |        |  |
| Spindle                                             | Main requirement, Materials and details of spindle design, Spindle   | 7      |  |
| Design and                                          | bearings, bearings, types of bearings and their selections, Bearing  |        |  |
| Spindle                                             | Materials BED, Columns, Tables and Ways: Materials, typical          |        |  |
| Bearings                                            | constructions and design.                                            |        |  |
|                                                     |                                                                      |        |  |
| Machine                                             | Requirement of control system selection and construction of control  | 6      |  |
| Tools                                               | systems Mechanical control                                           |        |  |
| Control                                             | system, predilection control, remote control safety devices.         |        |  |
| Systems                                             |                                                                      |        |  |
|                                                     |                                                                      |        |  |
| Machina                                             | Dynamic performance, dynamic and elastic system of Machine, tools    | 0      |  |
| Tool                                                | Dynamics of cutting forces, tool chatter                             | 7      |  |
| Dynamics                                            | Dynamics of cutting forces, tool chatter.                            |        |  |
| Dynamics.                                           |                                                                      |        |  |

|                                                                    | Total no. of Hrs | 40 |
|--------------------------------------------------------------------|------------------|----|
| References Book                                                    |                  |    |
| 1. Design Principles of Metal-Cutting Machine Tools by F. Koenigsb | erger            |    |
| 2. Machine Tool Design by N. K. Mehta. McGraw Hill Publishing      |                  |    |
| 3. Machine Tool Design by Acherkan, Mir publishing                 |                  |    |
| TextBooks                                                          |                  |    |
| 1 Machine Tool Design by S.K, Basu, Oxford and IBH Publishing      |                  |    |
| 2. Machine tool design by Sen and Bhattacharya, CBS Publications   |                  |    |

## **Course Outcomes:**

1. The student can identify different areas of Machine Tool Design

2. Can find the applications of all the areas in day to day life.

# **Maintenance Engineering**

# **Objectives:**

1.To develop a basic approach towards maintenance in industries.

2. Understanding to apply engineering concepts to the optimization of equipment, procedures, and departmental budgets to achieve better maintainability, reliability, and availability of equipment.

| SET/ME/BT/E610 Maintenance Engineering |                                                                      |        |  |
|----------------------------------------|----------------------------------------------------------------------|--------|--|
| Module Name                            | Contents                                                             | No. of |  |
|                                        |                                                                      | Hrs.   |  |
| Fundamental                            | Concept of maintenance, objective and characteristics of             | 9      |  |
| Of                                     | maintenance function, maintenance strategy and organisation,         |        |  |
| Maintenance                            | organization of the maintenance system, operating practices in       |        |  |
| management                             | maintenance, Maintenance record keeping.                             |        |  |
|                                        |                                                                      |        |  |
| Maintenance                            | Maintenance system, Maintenance planning and scheduling,             | 9      |  |
| management                             | Maintenance system and operation, documentation and regular          |        |  |
| systems                                | compliance, Project and trending management, contract                |        |  |
|                                        | management.                                                          |        |  |
| Operation                              | Spare part and inventory management, material handling system,       | 7      |  |
| aspect of                              | industrial safety management, asset replacement decision, shutdown   |        |  |
| Maintenance                            | maintenance, Maintenance audit, financial of Maintenance             |        |  |
| management                             | management.                                                          |        |  |
| Reliability and                        | Concept and definition, configuration of failure data, various terms | 6      |  |
| condition                              | used in failure data analysis in mathematical forms, component and   |        |  |
| monitoring                             | system failures, uses of reliability concepts in design and          |        |  |
|                                        | Maintenance of different system, lubrication practice, failure       |        |  |
|                                        | analysis and reliability engineering, thermal insulation and         |        |  |
|                                        | refractory.                                                          |        |  |

| Reliability<br>improvement                                            | Reliability in design, reliability in engineering, systems, systems<br>with spares, reliability simulation, redundant and stand by systems,<br>confidence levels, component improvement element, unit and<br>standby redundancy optimization and reliability-cost trade off. | 9  |  |  |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
|                                                                       | Total no. of Hrs                                                                                                                                                                                                                                                             | 40 |  |  |
| References Book                                                       |                                                                                                                                                                                                                                                                              |    |  |  |
| 1. Managing Maintenance Resources- A. Kelly, Butterworth-Heinemann.   |                                                                                                                                                                                                                                                                              |    |  |  |
| 2. Handbook of Maintenance Management- Levitt Joel, Industrial Press. |                                                                                                                                                                                                                                                                              |    |  |  |
| TextBooks                                                             |                                                                                                                                                                                                                                                                              |    |  |  |
| 1. Maintenance Planning and Control- A. Kelly, East West Press.       |                                                                                                                                                                                                                                                                              |    |  |  |
| 2. Mechanical Fault Diagnosis- R.A. Collacott, Chapman and Hall.      |                                                                                                                                                                                                                                                                              |    |  |  |

# **Course Outcomes:**

1. The students will understand the need of maintenance in industries.

2. Can find the applications of all the areas in day to day life.

# **Smart Materials**

# **Objectives:**

1. To study various types of smart materials used in engineering application

- To study various types of smart materials used in engineering
   To study basics of sensors and its engineering application
   To study basics of actuators and its engineering application

| SET/ME/BT/E611 Smart Materials |                                                                 |        |  |  |
|--------------------------------|-----------------------------------------------------------------|--------|--|--|
| Module Name                    | Contents                                                        | No. of |  |  |
|                                |                                                                 | Hrs.   |  |  |
| Overview of                    | Introduction to Smart Materials, Principles of Piezoelectricty, | 9      |  |  |
| smart materials                | PerovskytePiezoceramic Materials, Single Crystals vs            |        |  |  |
|                                | Polycrystalline Systems, Piezoelectric Polymers, Principles of  |        |  |  |
|                                | Magnetostriction, Rare earth Magnetostrictive materials, Giant  |        |  |  |
|                                | Magnetostriction and Magneto-resistance Effect, Introduction to |        |  |  |
|                                | Electro-active Materials, Electronic Materials, Electro-active  |        |  |  |
|                                | Polymers, Ionic Polymer Matrix Composite (IPMC), Shape          |        |  |  |
|                                | Memory Effect, Shape Memory Alloys, Shape Memory                |        |  |  |
|                                | Polymers, Electro-rheological Fluids, Magneto Rhelological      |        |  |  |
|                                | Fluids                                                          |        |  |  |

| High-band width,<br>low strain smart<br>sensors | Piezeoelctric Strain Sensors, In-plane and Out-of Plane Sensing,<br>Shear Sensing, Accelerometers, Effect of Electrode Pattern,<br>Active Fibre Sensing, Magnetostrictive Sensing, Villari Effect,<br>Matteuci Effect and Nagoka-Honda Effect, Magnetic Delay Line<br>Sensing, Application of Smart Sensors for Structural Health<br>Monitoring (SHM) System Identification using Smort Sensors                                                                      | 9  |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Smart actuators                                 | Monitoring (SIMI), System Identification using Sinart Sensors<br>Modelling Piezoelectric Actuators, Amplified Piezo Actuation –<br>Internal and External Amplifications, Magnetostrictive Actuation,<br>Joule Effect, Wiedemann Effect, Magnetovolume Effect,<br>Magnetostrictive Mini Actuators, IPMC and Polymeric<br>Actuators, Shape Memory Actuators, Active Vibration Control,<br>Active Shape Control, Passive Vibration Control, Hybrid<br>Vibration Control | 7  |
| Smart composites                                | Review of Composite Materials, Micro and Macro-mechanics,<br>Modelling Laminated Composites based on Classical Laminated<br>Plate Theory, Effect of Shear Deformation, Dynamics of Smart<br>Composite Beam, Governing Equation of Motion, Finite Element<br>Modelling of Smart Composite Beams                                                                                                                                                                       | 6  |
| Advances in<br>smart structures<br>& materials  | Self-Sensing Piezoelectric Transducers, Energy Harvesting<br>Materials, Autophagous Materials, SelfHealing Polymers,<br>Intelligent System Design, Emergent System Design                                                                                                                                                                                                                                                                                            | 9  |
|                                                 | Total no. of Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40 |

# **References Book**

1. Smart Structures: Analysis and Design, A. V. Srinivasan, Cambridge University Press, Cambridge, New York, 2001.

2. Smart Structures, P. Gauenzi, Wiley, 2009

3. Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors, Materials and Amplifiers, G. Gautschi, Springer, Berlin, New York, 2002

### **TextBooks**

1. Smart Material Systems and MEMS: Design and Development Methodologies, V. K. Varadan, K. J. Vinoy, S. Gopalakrishnan, John Wiley and Sons, England, 2006.

2. Smart Structures and Materials, Brain Culshaw, Artech House, London, 1996. 3. Smart Materials and Structures, Mukesh V. Gandhi, Brian S. Thompson, , Springer, May1992

# **Course Outcomes:**

By the end of course students will able to

1. Understand various smart material and its importance in engineering application

- 2. Know various processing technics of smart materials
- 3. Get knowledge of use of smart material as sensors and actuators
# **Machine Learning**

# **Objectives:**

1.To understand the basic theory underlying machine learning.

2. To be able to formulate machine learning problems corresponding to different applications.

3. To understand a range of machine learning algorithms along with their strengths and weaknesses.

| SET/ME/BT/OE 612 Machine Learning                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                 |                |  |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Module<br>Name                                                                                                            | Contents                                                                                                                                                                                                                                                                                                                                                                                        | No. of<br>Hrs. |  |
| Introduction                                                                                                              | Learning Problems – Perspectives and Issues – Concept Learning –<br>Version Spaces and Candidate Eliminations – Inductive bias –<br>Decision Tree learning – Representation – Algorithm – Heuristic<br>Space Search.                                                                                                                                                                            | 9              |  |
| Neural<br>Networks<br>and Genetic<br>Algorithms                                                                           | Neural Network Representation – Problems – Perceptrons –<br>Multilayer Networks and Back Propagation Algorithms – Advanced<br>Topics – Genetic Algorithms – Hypothesis Space Search – Genetic<br>Programming – Models of Evalution and Learning.                                                                                                                                                | 9              |  |
| Bayesian and<br>Computation<br>al Learning<br>Bayes<br>Theorem                                                            | Concept Learning, Maximum Likelihood, Minimum Description<br>Length Principle, Bayes Optimal Classifier – Gibbs Algorithm –<br>Naïve Bayes Classifier – BayesianBelief Network – EM Algorithm –<br>Probability Learning – Sample Complexity – Finite and Infinite<br>Hypothesis Spaces – Mistake Bound Model.                                                                                   | 7              |  |
| Instant Based<br>Learning                                                                                                 | K- Nearest Neighbour Learning – Locally weighted Regression –<br>Radial Bases Functions – Case Based Learning.                                                                                                                                                                                                                                                                                  | 6              |  |
| Advanced<br>Learning                                                                                                      | Sets of Rules – Sequential Covering Algorithm – Learning Rule Set –<br>First Order Rules – Sets of First Order Rules – Induction on Inverted<br>Deduction – Inverting Resolution – Analytical Learning – Perfect<br>Domain Theories – Explanation Base Learning – FOCL Algorithm –<br>Reinforcement Learning – Task – Q-Learning – Temporal Difference<br>Learning. "Current Streams of Thought | 9              |  |
|                                                                                                                           | Total no. of Hrs                                                                                                                                                                                                                                                                                                                                                                                | 40             |  |
| <b>References Book</b><br>1. Ryszard, S., Michalski, J. G. Carbonell and Tom M. Mitchell, Machine Learning: An Artificial |                                                                                                                                                                                                                                                                                                                                                                                                 |                |  |

Intelligence Approach, Volume 1, Elsevier. 2014,

2. Stephen Marsland, Taylor & Francis 2009. Machine Learning: An Algorithmic Perspective. **TextBooks** 

1. Marco Gori , Machine Learning: A Constraint-Based Approach, Morgan Kaufmann. 2017

# **Course Outcomes:**

- 1. Appreciate the importance of visualization in the data analytics solution
- 2. Apply structured thinking to unstructured problems

# **ENTREPRENEUR Essential**

# **Objectives:**

To develop and strengthen the entrepreneurial quality, to motivate them for achievement and to enable participants to be independent, capable, promising businessmen.

|                                                                                                                                                                                                                                                                                                  | SET/ME/BT/OE613 ENTREPRENEUR Essential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| Module Name                                                                                                                                                                                                                                                                                      | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No. of Hrs. |  |
| Concept of                                                                                                                                                                                                                                                                                       | Entrepreneurship and small scale industry, need for promotion of                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9           |  |
| Entrepreneurship                                                                                                                                                                                                                                                                                 | entrepreneurship, entrepreneurship development programmes<br>(EDP), personality characteristics of entrepreneur                                                                                                                                                                                                                                                                                                                                                                                                                   |             |  |
| Identification of<br>Investment<br>Opportunities                                                                                                                                                                                                                                                 | Governmental regulatory framework, industrial policy, industrial<br>development and regulation act, regulation of foreign<br>collaboration and investment, foreign exchange regulation act,<br>incentives for export oriented units, incentives for units in<br>industrially backward areas, incentives for small scale industry,<br>government assistance to SSI, how to start and SSI, list of items<br>reserved for SSI, Scouting for project ideas, preliminary<br>screening, project identification for an existing company. | 9           |  |
| Market and<br>Demand Analysis                                                                                                                                                                                                                                                                    | Information required for market and demand analysis, market<br>survey, demand forecasting, uncertainties demand forecasting.                                                                                                                                                                                                                                                                                                                                                                                                      | 7           |  |
| Cost of Project<br>and Means of<br>Financing                                                                                                                                                                                                                                                     | Cost of project, means of financing, planning the capital structure<br>of a new company, term loan financial institutions, cost of<br>production.                                                                                                                                                                                                                                                                                                                                                                                 | 6           |  |
| Financial<br>Management                                                                                                                                                                                                                                                                          | Concept and definition of financial management types of capital,<br>of finance, reserve and surplus, concepts and liabilities, profit and<br>loss statement balance sheet, depreciation, methods of calculating<br>depreciation break even analysis.                                                                                                                                                                                                                                                                              | 9           |  |
|                                                                                                                                                                                                                                                                                                  | Total no. of Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40          |  |
| <ol> <li>Keterences Book</li> <li>E.D.I. Ahmedabad, Publication regarding Entrepreneurship.</li> <li>Prasanna Chandra, Project Preparation, Appraisal Budgeting and Implementation, McGraw Hill.</li> <li>C.S.Gupta and N.P.Srinivasan, Entrepreneurial Development, S. Chand and co.</li> </ol> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |  |
| TextBooks<br>1. S. S. Khanka, Entrepreneurship Development Practice and Planning, S. Chand and co.                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |  |

## **Course Outcomes:**

By the end of course students will able to

1. Understand the concept of entrepreneurship.

2. Students will understand to develop their own industries.

# Work Study and Ergonomics

## **Objectives:**

- 1. Improvement of manufacturing processes and procedures.
- 2. Improvement of working conditions.
- 3. Improvement of plant layout and work place layout

| ł                                 | SET/ME/BT/OE614 Work Study and Ergonomics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |  |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| Module Name                       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No. of Hrs. |  |  |
| Unit I                            | Work Study - Areas of Application of Work Study in Industry; Method<br>Study and Work Measurements and their Inter-Relationship, Reaction of<br>Management and Labor to Work Study, Role of Work Study in Improving<br>Plant Productivity and Safety.                                                                                                                                                                                                                                                                                                        | 9           |  |  |
| Unit II                           | Method Study - Objectives and Procedure for Methods Analysis, Select,<br>Record, Examine, Develop,Define, Install and Maintain; Recording<br>Techniques, Micro Motion and Macro-Motion Study,<br>Principles of Motion Economy, Normal Work Areas and Work Place<br>Design.                                                                                                                                                                                                                                                                                   | 9           |  |  |
| Unit III                          | Work Measurement - Objectives, Work Measurement Techniques - Time<br>Study, Work Sampling, PreDetermined Motion Time Standards (PMTS),<br>Etc., Determination of Time Standards,<br>Observed Time, Basic Time, Normal Time, Rating Factors, Allowances,<br>Standard Time.                                                                                                                                                                                                                                                                                    | 7           |  |  |
| Unit IV                           | Introduction to Ergonomics - Historical Development of Human Factors<br>Engineering, Importance of Ergonomics Workplace Improvement and<br>Preventing Workplace Injuries.                                                                                                                                                                                                                                                                                                                                                                                    | 6           |  |  |
| Unit V                            | Human-Machine Interface - The Man-Machine System, Machine as a<br>System Component, Reaction Time, Muscular Performance, Static Work.<br>Types of Displays - Quantitative, Qualitative, Representative and Alpha-<br>Numeric, Efficiency of Each Type, Pedal Design, Design of Tools and<br>Controls, Stress in Human Body and its Consequences, Human<br>Anthropometry - Measurement,<br>Instrumentation, Adjustments in Measurement, Anthropometric Data for<br>Indian Workers, Uses of Anthropometric Data, Computer-Aided Man-<br>Machine System Design. | 9           |  |  |
|                                   | Total no. of Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40          |  |  |
| References Book<br>1. Shan, H. S. | - Work Study and Ergonomics, DhanpatRai& Sons, New Delhi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jaw Dallh   |  |  |

2. Dalela, S. and Saurabh -Work study and Ergonomics, Standard Publishers Distributors, New Delhi.

3. Bridger, R. S.- Introduction to Ergonomics ,Mcgraw Hill, New York.

TextBooks

1. Hicks - Industrial Engineering & Management, Tata McGraw Hill, New Delhi.

2. ILO - Introduction to Work Study, International Labor Office, Geneva.

## **Course Outcomes:**

By the end of course students will able to

1. Understand various symbols and its importance in engineering application

2. Understand to improve productivity of men, machines and materials.

# FLEXIBLE MANUFACTURING SYSTEMS

### **Objectives:**

To learn various concepts of GT,CAPP, MHS which helps in industrial automation

| Module Name | Contents                                                               | No of<br>Hrs |
|-------------|------------------------------------------------------------------------|--------------|
| Module1     | Understanding of FMS: Evolution of Manufacturing Systems,              | 6            |
|             | Definition, objective and Need, Components, Merits, Demerits and       |              |
|             | Applications of FMS                                                    |              |
| Module2     | Processing stations: Machining Centers, CMM etc. Different Layouts     | 10           |
|             | and their Salient features. Material Handling System: An introduction, |              |
|             | Conveyor, AGV, ASRS, Robots, etc. and their salient features.          |              |
| Module3     | Management technology: Tool Management, Configuration planning         | 10           |
|             | and routing, Production Planning and Control, Scheduling and control   |              |
| Module4     | Computer networks and control: Hardware, Software and database of      | 10           |
|             | FMS, Advantages of modular Software design and development,            |              |
|             | Requirement of FMS Software, Types of FMS software modules.            |              |
| Module5     | Case studies: Typical FMS problems from researches papers              | 4            |
|             | Total no of hrs                                                        | 40           |

**Text and References Books** 

1. Paul Ranky., "The design and operation of FMS", IFS publication, 1983.

2. Mikell P Groover, "Automation Production systems, Computer Integrated Manufacturing", Prentice Hall, 1987.

3. David J.Parrish, "Flexible Manufacturing" Butterworth-Heinemann, 1990

4. Computer Aided Manufacture by Chien Chang and Richard A Wysk, Prentice HALL

## **Course Outcomes:**

At the end of the course

The students will gain an experience in the implementation of flexible systems for industrial automation

#### SET/ME/BT/C604 HEAT & MASS TRANSFER LAB

#### List of practicals:

- 1. Conduction Composite wall experiment.
- 2. Conduction Composite cylinder experiment.
- 3. Convection Pool boiling experiment.
- 4. Convection Experiment on heat transfer from tube-natural convection.
- 5. Convection Heat Pipe experiment.
- 6. Convection Heat transfer through fin-natural convection.
- 7. Convection Heat transfer through tube/fin-forced convection.
- 8. Determination of Stephan Boltzmann Constant.
- 9. Determination of emissivity.
- 10. Heat exchanger Parallel flow experiment.
- 11. Heat exchanger Counter flow experiment.
- 12. Experiment on critical insulation thickness.
- 13. Conduction Determination of thermal conductivity of fluids.
- 14. Conduction Thermal Contact Resistance Effect.

#### Note: At least eight experiments should be performed from the above list.

#### SET/ME/BT/C605 FLUID MACHINERY LAB

- List of practicals:
- 1. Impact of Jet experiment.
- 2. Turbine experiment on Pelton wheel.
- 3. Turbine experiment on Francis turbine.
- 4. Turbine experiment on Kaplan turbine.
- 5. Experiment on reciprocating pump.
- 6. Experiment. on centrifugal pump.
- 7. Experiment on Hydraulic Jack/Press
- 8. Experiment on Hydraulic Brake
- 9. Experiment on Hydraulic Ram
- 10. Study through first visit of any pumping station/plant
- 11. Study through second visit of any pumping station/plant.
- 12. Any other suitable experiment/test rig such as comparison & performance of different types of pumps and turbines.
- Note: At least eight experiments should be performed from the above list.

#### SET/ME/BT/S607 Mini Project-II

The student will prepare working model/Analysis/ Sample Analysis of identified problem in mini project -I

#### **SEMESTER VII**

| S. No. | Category                                      | Code           | Course Title                       | L  | Т | Р | Contact<br>Hrs./Week | Credits |
|--------|-----------------------------------------------|----------------|------------------------------------|----|---|---|----------------------|---------|
| 1.     | Care Subjects                                 | SET/ME/BT/C701 | Automobile Engineering             | 3  | 1 | - | 4                    | 4       |
| 2.     | Core Subjects                                 |                | <sup>@</sup> Program Elective-3    | 3  | 1 | - | 4                    | 4       |
| 3.     |                                               |                | <sup>@</sup> Program Elective-4    | 3  | 1 | - | 4                    | 4       |
| 4.     | Core Subjects                                 | SET/ME/BT/C702 | Automobile Lab                     | -  | - | 1 | 2                    | 1       |
| 5.     | Based Labs                                    | SET/ME/BT/C703 | Industrial Training Seminar        | -  | - | 1 | 2                    | 1       |
| 6.     | Life Skills and<br>personality<br>development | SET/SH/BT/L701 | *Essential Management<br>Practices | 2  | - | - | 2                    | 2       |
| 7.     | Skill Course                                  | SET/ME/BT/S704 | Major Project Preparation          | -  | - | 1 | 8                    | 4       |
|        |                                               | TOTAL          | ·                                  | 11 | 3 | 3 | 26                   | 20      |

@Course offered by the department from the Program Elective- II list as given below.

#Courses offered by any other department of School of Engineering and Technology.

\*University will prepare communication course in Modern/Indian languages from which student will select one language course. The course will be more on applied side with giving students a chance to develop their soft skills. In case no syllabus is prepared by the university then Technical Seminar course will be offered.

**Programme Electives (PEL)**: Total **2** to be taken, at least one from each group – *Technology* and *Industry Sector*, based on Project topic and individual interest. Illustrative courses are listed here.

| S.N. | PEL (Technology)      | Code           | PEL (Industry Sector)   | Code            |
|------|-----------------------|----------------|-------------------------|-----------------|
|      |                       |                |                         |                 |
| 1    | Finite Element Method | SET/ME/BT/E705 | CAD/CAM and Robotics    | SET/ME/BT/OE709 |
| 2    | Renewable Energy      | SET/ME/BT/E706 | Product Design and      | SET/ME/BT/OE710 |
|      | Engineering           |                | Development             |                 |
| 3    | Additive              | SET/ME/BT/E707 | Unconventional          | SET/ME/BT/OE711 |
|      | Manufacturing         |                | Manufacturing Processes |                 |
| 4    | Computational Fluid   | SET/ME/BT/E708 | Turbo Machines          | SET/ME/BT/OE712 |
|      | Dynamics              |                |                         |                 |

## **AUTOMOBILE ENGINEERING**

# **Objective:**

1. To understand the construction and working principle of various parts of an automobile.

|                                                                                                                  | SET/ME/BT/C701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |  |  |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|
| Module Name                                                                                                      | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No of<br>Hrs |  |  |
| Introduction &<br>FuelSupply<br>System                                                                           | Introduction: Classification of automobile, Parts of an automobile, Description of an automobile, performance of automobile, engine cycle energy balance, terms connected with I C Engines, Detonation, performance number, attractive efforts. Fuel Supply System:S I Engine: Carburetion & carburetors, Induction system, factor influencing carburetion, Mixture requirement, Distribution, Complete carburetor, theory of simple carburetor C I Engine: Functional requirements of an injection system, Fuel pump and fuel injector (Atomizer), Types of nozzles and fuel spray patterns, troubleshooting of a fuel system & carburetor, Turbo Charger (Function and benefits)                                                                                                                                                                                              | 7            |  |  |
| Engine Friction,<br>Lubrication and<br>Cooling System                                                            | Determination of engine friction, Lubrication, lubrication system, Crankcase ventilation, Necessity<br>of engine cooling, Areas of heat flow in engines, gas temperature variation, heat transfer,<br>temperature distribution & temp Profiles, cooling air and water requirements, cooling systems,<br>troubleshooting of cooling system, gear box (Problems)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7            |  |  |
| Chassis &<br>Suspension                                                                                          | Chasis: Introduction Classification of chassis, Frame Suspension: Introduction, requirements of suspension system, springs, damper Wheels: Introduction, Requirement, types of wheels<br>Tyres: Introduction, requirements, types of tyre, tyre construction cross ply, radial ply, belted bias, tyre materials tyre shape, tread patterns, tyre markings, tyre inflation pressure, causes of wear, factors affecting tyre life, wheel balancing, wheel alignments                                                                                                                                                                                                                                                                                                                                                                                                              | 7            |  |  |
| Steering&Braking<br>System                                                                                       | Steering & Gears: Purpose, function, requirements, general arrangements of steering systems, steering gears, steering ratio, reversibility, steering geometry, under steering, over steering, steering arms, Drag link, power steering, adjusting of steering geometry, steering troubleshooting Requirements Clutches Toque converters Over drive and free wheel, Universal joint Differential Gear Mechanism of Rear Axle Automatic transmission, Steering and Front Axle Castor Angle. Front Axle: Introduction, construction, types of front axles, stub axles Braking System: Necessity, functions, requirements, classification of brakes, Mechanical brakes, hydraulics brakes, power brakes, brake effectiveness, brake shoe holding down arrangements, brake tester, brake service, troubleshooting chart of hydraulic brakes system, air brakes & Brake shoes & drums | 10           |  |  |
| Ignition System                                                                                                  | Automotive Electric System: Introduction, main parts of vehicles. Starting System: Introduction,<br>battery, starting motor Ignition System: Introduction, purpose, requirements, coil ignition system,<br>firing order, ignition timing, spark plugs, troubleshooting Charging System: Introduction<br>Dynamo, alternators Lighting: introduction, main circuits, lighting system Maintenance system:<br>Preventive maintenance, break down maintenance, and over hauling system                                                                                                                                                                                                                                                                                                                                                                                               | 9            |  |  |
|                                                                                                                  | Total noof Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40           |  |  |
| Text Books & Refer<br>1. Automotive Engine<br>2. Automobile Engine<br>3. Automobile Engine<br>4. Automobile Engg | ence Books<br>eering Hietner<br>eering Kripal Singh<br>eering Narang<br>K M Gupta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>     |  |  |

Online Resources:

1. https://archive.nptel.ac.in/courses/107/106/107106088/

Course Outcomes:

At the end of this course students will demonstrate the ability to

1. Upon completion of this course, students will understand the function of each automobile component and also have a clear idea about the overall vehicle performance.

# FINITE ELEMENT METHOD

## **Objectives:**

1. To learn basic principles of finite element analysis procedure .

2. To learn the theory and characteristics of finite elements that represent engineering structures.

3. To learn and apply finite element solutions to structural, thermal, dynamic problem to develop the knowledge and skills needed to effectively evaluate finite element analyses.

|                                                                                                        | SET/ME/BT/E705 FINITE ELEMENT METHOD                                                                                                                                                                                                                                                                                                                                                                                                               |             |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Module Name                                                                                            | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                           | No. of Hrs. |
| Introduction                                                                                           | Introduction to finite difference method and finite elements method, Advantages and<br>limitations, Mathematical formulation of FEM, Different approaches in Finite<br>Element Method – Direct Stiffness approach, simple examples, Variational approach,<br>Elements of variational calculus - Euler Lagrange equation, Rayliegh Ritz method,<br>Weighted Residual methods, Point Collocation method, Galarkin method - Steps<br>involved in FEM. | 8           |
| Types of Elements Used                                                                                 | Interpolation Polynomials - Linear elements Shape function - Analysis of simply<br>supported beam - Element and Global matrices - Two-dimensional elements,<br>triangular and rectangular elements - Local and Natural Co-ordinate system.                                                                                                                                                                                                         | 8           |
| Finite Element<br>Formulation of Field<br>Problems                                                     | 1-D and 2-D heat transfer, fluid flow (incompressible and non viscous fluid) in ducts,<br>Simple electrical and magnetic field problems. Simple Numerical examples.                                                                                                                                                                                                                                                                                | 8           |
| Finite Element<br>Formulation of Solid<br>Mechanics Problems                                           | 1-D problem of shaft; Truss element analysis of pinned truss, Plane stress/strain problems, Axi symmetric problems, thin plate problems; Vibration of shafts & beams.                                                                                                                                                                                                                                                                              | 8           |
| Numerical Methods in FEM                                                                               | Evaluation of shape functions - One dimensional & triangular elements, Quadrilateral<br>elements, Isoperimetric elements - Numerical Integration, Gauss Legendre quadrature<br>- Solution of finite element equations – Gauss Elimination Method, Cholesky<br>decomposition.                                                                                                                                                                       | 8           |
|                                                                                                        | Total no. of Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40          |
| References:-<br>1.The Finite Element Meth<br>2. An Introduction to Finit<br>3. Finite Element Procedur | nod O.C. Zienkiewicz and R.L. Taylor McGraw Hill<br>e Element Method J. N. Reddy McGraw Hill<br>re in Engineering Analysis K.J. Bathe McGraw Hill                                                                                                                                                                                                                                                                                                  | 1           |
| Text books:-                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| 1. Finite Element Analysis                                                                             | C.S. Krishnamoorthy Tata McGraw Hill                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| 2. Numerical Methods E I                                                                               | Balagurusamy Tata McGraw Hill                                                                                                                                                                                                                                                                                                                                                                                                                      |             |

### **Course Outcome:**

Upon successful completion of this course you should be able to:

1. Understand the concepts behind formulation methods in FEM.

2. Identify the application and characteristics of FEA elements such as bars, beams, plane and isoparametric elements.

# **Renewable Energy Engineering**

# **Objectives:**

1. To acquire knowledge of technical competency combined with research to generate innovative solutions in Energy engineering.

2. To be acquainted with a variety of options in energy sources.

3. To prepare the students to exhibit a high level of professionalism, integrity, environmental and social responsibility, and life-long independent learning ability with environment in mind.

| SET/ME/BT/E706 Renewable Energy Engineering                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| Module Name                                                                | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No. of Hrs. |  |
| Unit 1                                                                     | Basic concepts of energy; Introduction to Renewable Energy Technologies;<br>Energy and Environment – global warming, acid rains, depletion of ozone layer;<br>Global and Indian Scenario of renewable energy sources; Energy storage -<br>necessity and energy storage methods.<br>Solar Energy: Fundamentals; Solar Radiation; Estimation of solar radiation on<br>horizontal and inclined surfaces; Measurement of solar radiation data.                                                                   | 8           |  |
| Unit 2                                                                     | <ul> <li>Solar Thermal Systems: Introduction; Basics of thermodynamics and heat transfer; Flat plate collector; Evacuated Tubular Collector; Solar air collector; Solar concentrator; Solar distillation; Solar cooker; Solar refrigeration and air conditioning; Thermal energy storage systems.</li> <li>Solar Photovoltaic Systems: Introduction; Solar cell Fundamentals; Characteristics and classification; Solar cell: Module, panel and Array construction; Photovoltaic thermal systems.</li> </ul> | 8           |  |
| Unit 3                                                                     | <b>Wind Energy</b> : Introduction; Origin and nature of winds; Wind turbine siting; Basics of fluid mechanics; Wind turbine aerodynamics; wind turbine types and their construction; Wind energy conversion systems.                                                                                                                                                                                                                                                                                         | 8           |  |
| Unit 4                                                                     | <ul> <li>Fuel cells: Overview; Classification of fuel cells; Operating principles;</li> <li>Fuel cell thermodynamics.</li> <li>Biomass Energy: Introduction; Photosynthesis Process; Biofuels;</li> <li>Biomass Resources; Biomass conversion technologies; Urban waste to energy conversion; Biomass gasification</li> </ul>                                                                                                                                                                                | 8           |  |
| Unit 5                                                                     | Other forms of Energy: Introduction: Nuclear, ocean and geothermal energy applications; Origin and their types; Working principles.                                                                                                                                                                                                                                                                                                                                                                          | 8           |  |
|                                                                            | Total no. of Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40          |  |
| Text/ References:-<br>1. O.P. Gupta,<br>2. V.V.N. Kish<br>Routledge, 1st I | "Energy Technology", Khanna Book Publishing, New Delhi.<br>ore, "Renewable Energy Engineering and Technology: Principles and Practi<br>Edition, 2019.                                                                                                                                                                                                                                                                                                                                                        | ce,"        |  |

3. N. Jenkins and J. Ekanayake, "Renewable Energy Engineering," Cambridge University Press, 1st Edition, 2017.

4. G. Boyle, "Renewable Energy," OUP Oxford, 2nd Edition, 2009.

# **Course Outcome:**

At the end of this course students will demonstrate the ability to

1. Acquire, apply and share in depth knowledge in the area of Energy Engineering and Management.

2. An ability to apply engineering and scientific principles for the effective management of energy systems.

# **Additive Manufacturing**

## **Objective:**

To provide an overview of Additive Manufacturing processes, systems and applications.

| SET/ME/BT/E707Additive Manufacturing                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| Module Name                                                                                                                                            | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No. of Hrs. |  |
| Introduction                                                                                                                                           | Evolution of AM/3D printing; Comparison with subtractive and forming processes; Advantages of AM; Classification of AM processes; Key steps in AM.                                                                                                                                                                                                                                                                                                              | 8           |  |
| Liquid State-based<br>AM Processes                                                                                                                     | Stereo lithography – Process and working principle;<br>Photopolymers; Photo polymerization, layering technology, Laser<br>and Laser scanning; Micro-stereolithography; Equipment and<br>specifications; Applications, advantages, disadvantages, examples;<br>Solid ground curing: Process, Working principle; Equipment and<br>specifications; Applications, advantages, disadvantages, examples.                                                              | 8           |  |
| Solid State-based<br>AM Processes                                                                                                                      | Fused Deposition Modeling – Process, working principle and<br>materials; Equipment and specifications; Laminated object<br>manufacturing – Process and working principle; Equipment and<br>specifications; Applications, advantages, disadvantages, examples;<br>Other solid-state processes – Ultrasonic consolidation, Gluing,<br>Thermal bonding; Demonstration of equipment.                                                                                | 8           |  |
| Powder Based AM<br>Processes                                                                                                                           | Powder Bed Fusion Processes – Working principle and materials;<br>Powder fusion mechanism and powder handling; Various LBF<br>processes (principle, materials, applications and examples) –<br>Selective laser Sintering, Electron Beam Melting, Laser Engineered<br>Net Shaping, Binder Jetting and Direct Metal Deposition;<br>Comparison between LBF processes; Materials-process-structure-<br>property relationships; relative advantages and limitations. | 8           |  |
| Applications of<br>AM                                                                                                                                  | Product development lifecycle applications – Rapid prototyping,<br>concept models, visualization aids, replacement parts, tooling, jigs<br>and fixtures, moulds and casting; Application sectors – aerospace,<br>automobile, medical, jewelry, sports, electronics, food,<br>architecture, construction and others.                                                                                                                                             | 8           |  |
|                                                                                                                                                        | Total no. of Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40          |  |
| References:-<br>1. The Finite Element Meth<br>2. An Introduction to Finite<br>3. Finite Element Procedur<br>Text books:-<br>1. Finite Element Analysis | od O.C. Zienkiewicz and R.L. Taylor McGraw Hill<br>Element Method J. N. Reddy McGraw Hill<br>e in Engineering Analysis K.J. Bathe McGraw Hill                                                                                                                                                                                                                                                                                                                   |             |  |
| 2. Numerical Methods E F                                                                                                                               | C.S. Krishnanooriny fata McGraw Hill<br>Balagurusamy Tata McGraw Hill                                                                                                                                                                                                                                                                                                                                                                                           |             |  |

# **Course Outcome:**

At the end of this course students will demonstrate the ability to

- 1. Understand the overall principle and various processes for additive manufacturing.
- 2. Select a particular additive manufacturing process based on the end application.
- 3. Plan the steps in fabricating a given part using additive manufacturing.

# **Computational Fluid Dynamics**

# **Objective:**

- 1. Students will conduct numerical experiments and carry out data analysis.
- 2. They will acquire basic skills on programming of numerical methods used to solve the Governing equations.

|                         | SET/ME/BT/E708 Computational Fluid Dynamics                                         |           |  |  |
|-------------------------|-------------------------------------------------------------------------------------|-----------|--|--|
| Module Name             | Contents                                                                            | No of Hrs |  |  |
| Introduction to         | Need of CFD as tool, role in R&D, continuum, material or substantial                | 10        |  |  |
| CFD and                 | derivative or total derivative, gradient, divergence and curl operators, Linearity, |           |  |  |
| Governing               | Principle of Superposition. Derivation of Navier-Stokes equations in control        |           |  |  |
| Equations               | volume (integral form) and partial differential form, Euler equations (governing    |           |  |  |
| -                       | inviscid equations). Mathematical classification of PDE (Hyperbolic, Parabolic,     |           |  |  |
|                         | Elliptic). Method of characteristics, Introduction to Riemann Problem and           |           |  |  |
|                         | Solution Techniques.                                                                |           |  |  |
| <b>One-dimensional</b>  | Conservative, Non-conservative form and primitive variable forms of                 | 10        |  |  |
| <b>Euler's equation</b> | Governing equations. Flux Jacobian Is there a systematic way to diagonalise         |           |  |  |
| 1                       | Eigenvalues and Eigenvectors of Flux Jacobian. Decoupling of Governing              |           |  |  |
|                         | equations, introduction of characteristic variables. Relation between the two       |           |  |  |
|                         | non-conservative forms. Conditions for genuinely nonlinear characteristics of       |           |  |  |
|                         | the flux Jacobian. Introduction to Turbulence Modeling: Derivation of RANS          |           |  |  |
|                         | equations and k-epsilon model.                                                      |           |  |  |
|                         | 1 1                                                                                 |           |  |  |
| Representation of       | Need for representation of functions. Box Function, Hat Function,                   | 10        |  |  |
| Functions on            | Representation of sinx using hat functions: Aliasing high frequency low             |           |  |  |
| Computer                | frequency Representation error as a global error Derivatives of hat functions       |           |  |  |
| Computer                | Haar functions Machine Ensilon Using Taylor series for representation of            |           |  |  |
|                         | Derivatives                                                                         |           |  |  |
|                         | Derivatives.                                                                        |           |  |  |
| Finite difference       | Applied to Linear Convection equation, Laplace Equations, Convection                | 7         |  |  |
| method                  | Diffusion equations, Burgers equations, modified equations • Explicit methods       |           |  |  |
|                         | and Implicit methods – as applied to applied to linear convection equation,         |           |  |  |
|                         | Laplace equations, convection diffusion equation of FTCS, FTFS, FTBS, CTCS of       |           |  |  |
|                         | Jacobi Method, Gauss-Siedel, Successive Over Relaxation Method, TDMA.               |           |  |  |
|                         | VonNaumann stability (linear stability) analysis. Upwind Method in Finite           |           |  |  |
|                         | Difference method.                                                                  |           |  |  |
| Finite volume           | Finite volume method. Finding the flux at interface.Lax-Friedrichs Method,          | 8         |  |  |
| method                  | Lax-Wendroff Method, Two-Step Lax-Wendroff Method and Mac Cormack                   |           |  |  |
|                         | Method, Flux Splitting Method Steger and Warming, vanLeer, Roe's Method             |           |  |  |
|                         | and finding Roe's Averages.                                                         |           |  |  |
|                         |                                                                                     |           |  |  |
| T. (D. d.               | Total no ofHrs                                                                      | 45        |  |  |

#### Text Books

1. T.j.chung,Computational Fluid Dynamics, , Cambridge University Press

2. Ghoshdastidar, Computational fluid dynamics and heat transfer, Cengage learning, 2017.

3. Charles Hirsch, Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics – Vol 1 & Vol 2, Butterworth- Heinemann, 2007

#### **References Books**

1.Pletcher, r. H., Tannehill, j. C., Anderson, d., Computational fluid mechanics and heat transfer, 3rd ed., Crc press, 2011, ISBN 9781591690375.

# **Course Outcome:**

At the end of this course students will demonstrate the ability to

- Understand mathematical characteristics of partial differential equations.
- Explain how to classify and computationally solve Euler and Navier-Stokes equations.

#### **CAD/CAM AND ROBOTICS**

#### **Objective:**

1. To Impart knowledge to students in recent advances in the Computer Aided Manufacturing to educate them to prosper in Manufacturing engineering and research related professions

|                                                   | SET/ME/BT/OE 709 CAD/CAM AND ROBOTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Module Name                                       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No of Hrs |
| CAD Tools &<br>Geometric Modeling                 | CAD Tools: Definition of CAD Tools, Types of system, CAD/CAM system evaluation criteria, input and output devices Graphics standard, functional areas of CAD, Modeling and viewing, Review of C, C++, statements such as if else for while & switch, functions, pointernotations, structure & class, concept of OOPS .Geometric Modeling: Output primitives Bresenham's line drawing and Midpoint circle algorithms Types of mathematical representation of curves, wire frame models wire frame entities parametric representation of synthetic curves hermite cubic splines Bezier curves B splines rational                                              | 10        |
| Surface Modeling                                  | Surface Modeling: Mathematical representation surfaces, Surface model, Surface entities<br>surface representation, Parametric representation of surfaces, plane surface, rule surface,<br>surface of revolution, Tabulated Cylinder Parametric Representation of Synthetic<br>Surface:HermiteBicubic surface, Bezier surface, B Spline surface, COONs surface,<br>Blending surface, Sculptured surface, Surface manipulation – Displaying, Segmentation,<br>Trimming, Intersection, Transformations (both 2D and 3D). Geometric Modeling 3D:<br>Solid modeling, Solid Representation, Boundary Representation (B rep), Constructive<br>Solid Geometry (CSG) | 10        |
| Collaborative<br>Engineering                      | CAD/CAM Exchange: Evaluation of data – exchange format, IGES data representations<br>and structure, STEP Architecture, implementation, ACIS & DXF. Collaborative<br>Engineering: Collaborative Design, Principles, Approaches, Tools, Design Systems<br>Introduction to CAD/CAE, Element of CAD, Concepts of integrated CAD/CAM, CAD<br>Engineering applications, its importance & necessity Finite Element Methods:<br>Introduction and Application of FEM, Stiffness Matrix/ Displacement Matrix, One/Two<br>Dimensional bar & beam element (as spring system) analysis                                                                                   | 10        |
| NC Part<br>Programming                            | NC Part Programming Manual (word address format) programming Examples Drilling and Milling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7         |
| System Devices<br>&Interpolators                  | System Devices Introduction to DC motors, stepping motors, feed back devices such as<br>encoder, counting devices, digital to analog converter and vice versa Interpolators<br>Principle, Digital Differential Analysers Linear interpolator, circulator Interpolator and<br>its software interpolator Control of NC Systems Open and closed loops Automatic<br>control of closed loops with encoder & tachometers Speed variation of DC motor<br>Adaptive control                                                                                                                                                                                          | 8         |
|                                                   | Total no ofHrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45        |
| Text Books1. CAD/CAM Theory a2. Computer Oriented | and Practice – Ibrahim Zeid, TMH.<br>Numerical Methods, Rajaraman, PHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| <b>References Books</b><br>1. CAD/CAM – Groov     | er&Zimmers, Pearson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |

#### **Course Outcome:**

At the end of this course students will demonstrate the ability to

1.An ability to write and present a substantial technical report/document.

2. Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program

#### PRODUCT DESIGN AND DEVELOPMENT

# **Objective:**

The aim of the course is to facilitate students develop of a key ability in the search of value creation of a business.

| SET/ME/BT/OE710. PRODUCT DESIGN AND DEVELOPMENT |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |  |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|
| Module Name                                     | Content No. of Hrs.                                                                                                                                                                                                                                                                                                                                                                                                               |                   |  |  |  |
| Product Design                                  | Introduction, Product Planning, Identifying Customer Needs, Project Selection, Concept<br>Generation, Concept Testing, Concept Selection, Product Specification, Product<br>Architecture, Industrial Design, Robust Design, Product Development Economics, Design<br>for Manufacturing, Supply Chain Design, Intellectual Property, Design for Environment.                                                                       | 20                |  |  |  |
| Product<br>Development                          | Product Development Schedule, Customer base for customer needs survey, Project<br>Proposal, Mission statement and customer needs, Concepts sketch and target specification,<br>Preliminary concept selection, Drawings, plans and revised schedule, financial model and<br>patent review Submission and Evaluation of Alpha prototype and test report, Beta<br>prototype and customer evaluation, demonstration of working model. | 20                |  |  |  |
| Total No. of Hours                              |                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40                |  |  |  |
| References                                      | <ol> <li>Karl T. Ulrich and Steven D. Eppinger, "Product Design and Development", 3rd Edition<br/>McGraw- Hill, 2003, ISBN 0-07-058513-X.</li> <li>Kevin Otto and Kristin Wood, "Product Design", Pearson Education, 2003, ISBN: 8129'</li> </ol>                                                                                                                                                                                 | , Tata<br>702711. |  |  |  |

### **Course Outcome:**

As the outcome of completing this course, the student should get the ability to:

- 1. Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- 2. Identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.

#### UNCONVENTIONAL MANUFACTURING PROCESSES

# Objective

1. Compare non-traditional machining, classification, material applications in material removal process.

2. Summarize the principle and processes of abrasive jet machining.

3. Understand the principles, processes and applications of thermal metal removal processes.

|                                        | SET/ME/BT/OE711UNCONVENTIONAL MANUFACTURING PROCESSES                                                                                                                                                    |           |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Module                                 | Contents                                                                                                                                                                                                 | No of Hrs |
| Introduction                           | Limitations of conventional manufacturing processes need of unconventional manufacturing processes & its classification and its future possibilities                                                     | 8         |
| Unconventional<br>Machining<br>Process | Principle and working and applications of unconventional machining process such as Electro Discharge machining, Electro chemical machining, ultrasonic machining, Abrasive jet machining etc             | 8         |
|                                        | Principle and working and application of unconventional machining processes such as Laser beam machining, Electron beam machining, Ultrasonic machining etc (these can also be used for welding)         |           |
| Unconventional<br>welding<br>processes | Explosive welding, Cladding etc under water welding, Metalizing, Plasma are welding/cutting etc                                                                                                          | 8         |
| Unconventional<br>Forming<br>processes | Principle, working and applications of High energy forming processes such as Explosive Forming,<br>Electromagnetic forming, Electro Discharge forming, water hammer forming, explosive<br>compaction etc |           |
| Electronic<br>device<br>Manufacturing  | Brief description of Diffusion and Photo Lithography process for electronic device manufacturing                                                                                                         |           |
|                                        | Total noof Hrs                                                                                                                                                                                           | 40        |
|                                        | Text and Reference Books:                                                                                                                                                                                |           |
|                                        | 1. Modern Machining Processes – P C Pandey                                                                                                                                                               |           |
|                                        | 2. Unconventional Machining – V K Jain                                                                                                                                                                   |           |

# **Course Outcome:**

1. Understand of fundamentals of the non-traditional machining methods and industrial applications.

2. Compare Conventional and Non-Conventional machining and analyze the different elements of Ultrasonic Machining and its applications.

3. Identify and utilize fundamentals of metal cutting as applied to machining

#### **TURBO MACHINES**

#### Objective

To provide fundamental knowledge of turbo machines and their application. Also make them able to describe the working principles and applications of gas turbines and their components.

| SET/ME/BT/OE712 TURBO MACHINES                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Module Name                                                               | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No of Hrs |
| Basic Concepts of<br>Turbo machines                                       | Definition, classification and stages of turbo machines, estimation of specific work for incompressible and compressible flow machines. Internal and external losses, various efficiencies, representation of specific work on T-s and h-s diagrams, velocity triangles - centrifugal and axial flow machine impellers, Euler's energy equation across the impeller as applicable to all machines, slip and its estimation, degree of reaction, blade angles and their effects, calculations considering slip.                                                                                                                                        | 9         |
| Centrifugal Flow<br>Machines                                              | Fans - different impeller sizes, shapes, blade angles, speed and construction. Blade shape,<br>blade number, simple design calculations, performance in series and parallel. Compressor -<br>slip, inducers, designs without inducer but with inlet guide vanes (IGV). Simple problems<br>with inducer and IGV's - blade angles, temperature rise and static pressure rise across the<br>impeller. Vaned and vaneless diffuser and volute casing. Pump - system head, priming of<br>pumps, net positive suction head, minimum starting speed and cavitations.                                                                                         | 9         |
| Axial Flow Fans<br>And Compressors                                        | Low pressure head rise fans - blade profile, lift and drag coefficients, their variation with incidence, expressions for energy transfer and pressure rise in terms of CL and CD, simple design calculations. Compressors - brief introduction to two-dimensional cascade and its application to design, flow deflection and stagnation pressure loss across blade rows, expression for pressure rise coefficient in terms of flow angles and loss coefficient. Design of impeller blades for free vortex and forced vortex. Simple design and performance calculations. Stall and surge phenomenon.                                                  | 9         |
| Hydraulic Turbines                                                        | Pelton turbine- impulse wheel, single jet and multiple jet units, velocity triangles at inlet<br>and exit of buckets, performance calculations considering losses in the nozzle and buckets.<br>Francis turbine - reaction, impeller shapes for different shape numbers/ heads, calculations<br>on impeller dimensions, blade angles and performance using velocity triangles, draft tubes.<br>Kaplan / Propeller Turbine - reaction, impeller (adjustable and fixed) blades and guide<br>blades, calculation of performance using velocity triangles / blade angles at different radii<br>for free vortex flow, its suitability for low heads.       | 9         |
| Axial Flow<br>Turbines                                                    | Degree of reaction - expression in terms of flow angles, importance of 50 percent reaction stage, effect on the velocity triangles, blade shape and efficiency. Comparison of impulse blades of constant thickness with blades thicker at the centre.Representation on h-s diagram, comparison of impulse and 50 percent reaction stages, stage efficiencies, velocity triangles, blade angle calculations. Steam turbines - condensing and non-condensing, partial admission at inlet, presence of moisture at the low pressure end of condensing turbines, problems associated with moisture - blade erosion and methods to reduce the bad effects. | 9         |
|                                                                           | Total noof Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45        |
| <b>Text and Reference</b><br>1. Yahya.S.M, "Turbi<br>2. Gopalakrishnan.G. | <b>Books:</b><br>ines, Fans and Compressors", 3rd edition, Tata McGraw Hill Publications.<br>PrithviRaj.D, "Treatise on Turbomachines", 1st edition, Chennai, SciTech Publications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |

2. Gopalakrishnan.G, PrithviRaj.D, "Treatise on Turbomachines", 1st edition, Chennai, SciTech Publications.

## **Course Outcome:**

As the outcome of completing this course, the student should get the ability to:

- 1. The students will understand about different turbines.
- 2. the students will get knowledge about vane diagram of turbines.

### **AUTOMOBILE LAB**

# SET/ME/BT/C702 AUTOMOBILE LAB

| List of Experiment                                                                                                       |  |  |
|--------------------------------------------------------------------------------------------------------------------------|--|--|
| 1.Performance Analysis of Four stroke S I Engine. Determination of indicated and Brake thermal efficiency, specific fuel |  |  |
| consumption at different loads and Energy Balance                                                                        |  |  |
| 2.Determination of Indicated Horse Power of I C Engine by Morse Test                                                     |  |  |
| 3.Performance Analysis of Four stroke C I Engine. Determination of indicated and brake thermal efficiency, specific fuel |  |  |
| consumption at different loads and Energy Balance                                                                        |  |  |
| 4.To measure CO & Hydrocarbons in the exhaust of 2- stroke / 4-stroke petrol engine.                                     |  |  |
| 5.To find intensity of smoke from a single cylinder / multi-cylinder diesel engine.                                      |  |  |
| 6. To draw the scavenging characteristic curves of single cylinder petrol engine.                                        |  |  |
| 7.Study& experiment on Valve mechanism                                                                                   |  |  |
| 8.Study& experiment on Gear Box                                                                                          |  |  |
| 9.Study& experiment on Differential Gear Mechanism of Rear Axle                                                          |  |  |
| 10.Study& experiment on Steering Mechanism                                                                               |  |  |
| 11.Study& experiment on Automobile Braking System                                                                        |  |  |
| 12.Study& experiment on Chassis and Suspension System                                                                    |  |  |
| Note: At least ten experiments should be performed from the above list                                                   |  |  |
|                                                                                                                          |  |  |

#### INDUSTRIAL TRAINING SEMINAR

## SET/ME/BT/C703. INDUSTRIAL TRAINING SEMINAR

| Module Name      | Content                                                                                                     |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
|                  |                                                                                                             |  |  |  |
|                  | Student shall prepare a detailed report on her/his industrial training and deliver a seminar of 30 minutes. |  |  |  |
| Total No. of Hou | irs                                                                                                         |  |  |  |

٦

# **SEMESTER VIII**

| S. No. | Category                                      | Code           | Course Title                    | L | Т | Р | Contact<br>Hrs./Week | Credits |
|--------|-----------------------------------------------|----------------|---------------------------------|---|---|---|----------------------|---------|
| 6.     |                                               | SET/ME/BT/C801 | Power Plant Engineering         | 3 | 1 | - | 4                    | 4       |
| 7.     | Core Subjects                                 |                | <sup>@</sup> Program Elective-5 | 3 | 1 | - | 4                    | 4       |
| 8.     |                                               |                | <sup>@</sup> Program Elective-6 | 3 | 1 | - | 4                    | 4       |
| 9.     | Life Skills and<br>personality<br>development | SET/SH/BT/L801 | *Disaster Management            | - | - | 1 | 4                    | 2       |
| 10.    | Skill Course                                  | SET/ME/BT/S802 | Major Project                   | - | - | 1 | 12                   | 6       |
|        |                                               | Total          |                                 | 9 | 3 | 2 | 28                   | 20      |

@Course offered by the department from the Program Elective- II list as given below.

#Courses offered by any other department of School of Engineering and Technology.

\*University will prepare communication course in Modern/Indian languages from which student will select one language course. The course will

be more on applied side with giving students a chance to develop their soft skills.

**Programme Electives (PEL)**: Total **2** to be taken, at least one from each group – *Technology* and *Industry Sector*, based on Project topic and individual interest. Illustrative courses are listed here.

| S.N. | PEL (Technology)                          | Credit         | PEL (Industry<br>Sector)                        | Credit          |
|------|-------------------------------------------|----------------|-------------------------------------------------|-----------------|
| 1    | Advance Welding<br>Technology             | SET/ME/BT/E802 | Composite Material                              | SET/ME/BT/OE806 |
| 2    | Gas Dynamics and Jet<br>Propulsion System | SET/ME/BT/E803 | Computer Integrated<br>Manufacturing<br>Systems | SET/ME/BT/OE807 |
| 3    | Solar Thermal Power<br>Engineering        | SET/ME/BT/E804 | Optimization<br>Techniques in<br>Engineering    | SET/ME/BT/OE808 |
| 4    | Experimental Stress<br>Analysis           | SET/ME/BT/E805 | Biomedical<br>Engineering                       | SET/ME/BT/OE809 |

## **POWER PLANT ENGINEERING**

## **Course objectives:**

To provide an overview of power plants and the associated energy conversion issues.

|                                                                                                                                                                                    | SET/ME/BT/C801 POWER PLANT ENGINEERING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|
| Module Name                                                                                                                                                                        | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No of                                                   |  |  |  |  |
|                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hrs                                                     |  |  |  |  |
| Introduction                                                                                                                                                                       | Power and energy, sources of energy, review of thermodynamic cycles related<br>to power plants, fuels and combustion, calculations Variable Load problem<br>Industrial production and power generation compared, ideal and realised load<br>curves, terms and factors Effect of variable load on power plant operation,<br>methods of meeting the variable load problem Power plant economics and<br>selection Effect of plant type on costs, rates, fixed elements, energy elements,<br>customer elements and investor's profit, depreciation and replacement, theory<br>of rates Economics of plant selection, other considerations in plant selection | 8                                                       |  |  |  |  |
| Steam power                                                                                                                                                                        | Power plant boilers including critical and super critical boilers Fluidized bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                       |  |  |  |  |
| plant                                                                                                                                                                              | boilers, boilers mountings and accessories General layout of steam power<br>plant Different systems such as fuel handling system, pulverizes and coal<br>burners, combustion system, draft, ash handling system, feed water treatment<br>and condenser and cooling system, turbine auxiliary systems such as<br>governing, feed heating, reheating , flange heating and gland leakage<br>Operation and maintenance of steam power plant, heat balance and efficiency                                                                                                                                                                                     |                                                         |  |  |  |  |
| Diesel power plant                                                                                                                                                                 | General layout, performance of diesel engine, fuel system, lubrication system,<br>air intake and admission system, supercharging system, exhaust system, diesel<br>plant operation and efficiency, heat balance Gas turbine power plant<br>Elements of gas turbine power plants, Gas turbine fuels, cogeneration,<br>auxiliary systems such as fuel, controls and lubrication, operation and<br>maintenance, Combined cycle power plants                                                                                                                                                                                                                 | 9                                                       |  |  |  |  |
| Hydro electric                                                                                                                                                                     | Principles of working, applications, site selection, classification and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                       |  |  |  |  |
| station                                                                                                                                                                            | arrangements, hydroelectric plants, run off size of plant and choice of units, operation and maintenance, hydro systems, interconnected systems, micro and mini hydro power plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |  |  |  |  |
| Nuclear power<br>plant                                                                                                                                                             | Principles of nuclear energy, basic components of nuclear reactions, nuclear<br>power station Nuclear fuels in fission and fusion reactors, Types of nuclear<br>reactors, Fissile and fertile materials, Neutron chain reaction in fission<br>reactors, Neutron flux, Concept of criticality for bare homogeneous reactors,<br>Coolants, moderators, Control and structural materials Heat generations and<br>steady state temperature distribution in fuel elements, Heat removal                                                                                                                                                                       | 9                                                       |  |  |  |  |
|                                                                                                                                                                                    | Total no of Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43                                                      |  |  |  |  |
| Text books:<br>1. Nuclear Reactor E<br>2. Basic Nuclear Eng<br>33. Introduction to N<br>4. "Power Plant Engine<br>References Books<br>1 Power Plant Engine<br>2. Power Plant Techr | ngineering By S Glastone and A Sesonske .<br>ineering, by K S Ram .<br>uclear Engineering, by J R lamarsh.<br>neering" F T Morse, Affiliated East West Press Pvt Ltd, New Delhi/Madras<br>eering, Mahesh Verma, Metropolitan Book Company Pvt Ltd.<br>nology, El Vakil, McGraw Hill.                                                                                                                                                                                                                                                                                                                                                                     |                                                         |  |  |  |  |
| 3 Power Plant Engin                                                                                                                                                                | eering by P.K. Nag. Tata McGraw Hill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 Power Plant Engineering by P.K. Nag. Tata McGraw Hill |  |  |  |  |

3. Power Plant Engineering by P K Nag, Tata McGraw Hill.

4. Steam & Gas Turbines & Power Plant Engineering by R Yadav, Central Pub.

### **Course outcomes:**

At the end of this course students will demonstrate the ability to

1. Upon completion of the course, the students can understand the principles of operation for different power plants and their economics.

## SET/ME/BT/E802 ADVANCE WELDING TECHNOLOGY

#### **Course objectives:**

The objective of this course is

1. To learn various concepts related to welding, its application

2. To have practical purview of various welding process, welding standards, advanced welding process.

|                                      | SET/ME/BT/E802 ADVANCE WELDING TECHNOLOGY                                                                                                                                                                                                                                                                                                                                   |       |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Module                               | Contents                                                                                                                                                                                                                                                                                                                                                                    | No of |
| Name                                 |                                                                                                                                                                                                                                                                                                                                                                             | Hrs   |
| Module 1                             | Solid state welding: classification of solid state welding processes, Adhesive                                                                                                                                                                                                                                                                                              | 8     |
|                                      | bonding, advantages and applications.                                                                                                                                                                                                                                                                                                                                       |       |
| Module 2                             | Friction welding: Friction welding process variables, welding of similar and<br>dissimilar materials, Defective analysis of friction welded components, Friction<br>welding of materials with inter layer.<br>Friction stir welding: Processes parameters, tool geometry, welding of<br>Aluminium alloys, Friction stir welding of Aluminum alloys and Magnesium<br>alloys. | 8     |
| Module 3                             | Electron Beam welding (EBW): Electron Beam welding process parameters, atmospheric affect Defective analysis of Electron beam welds and Electron Beam welding dissimilar materials.                                                                                                                                                                                         | 10    |
| Module 4                             | Laser Beam welding (LBW): Laser Beam welding process parameters, atmospheric affect and Laser Beam welding of steels.                                                                                                                                                                                                                                                       | 6     |
| Module 5                             | Selection power source : Constant voltage and constant current power sources.<br>Weldability of cast iron and steel : weldability studies of cast iron and steel,                                                                                                                                                                                                           | 8     |
|                                      | Total no of Hrs                                                                                                                                                                                                                                                                                                                                                             | 40    |
| <b>Text and Ref</b><br>1. Nadkarni S | ference Books:<br>.V., Modern Welding Technology, Oxford IBH Publishers, 1996.                                                                                                                                                                                                                                                                                              |       |

2. Parmar R. S., Welding Engineering and Technology, Khanna Publishers, 2005.

3. D. L. Olson, T. A. Siewert, Metal Hand Book, Vol 06, Welding, Brazing and Soldering, ASM International Hand book Metals Park, Ohio USA, 2008.

#### **Course outcomes:**

At the end of the course

The students will gain an experience in the implementation of welding techniques concepts which are applied in the field of production.

#### SET/ME/BT/E803 Gas Dynamics and Jet Propulsion system

### **Course objectives:**

1. Define basic concept and importance of gas dynamics.

2. Interpret the flow pattern in flow and non flow systems.

3. Identify the thrust equation and its usage in jet aircraft and rocket propulsion in an efficient way.

| SET/ME/BT/E803 Gas Dynamics and Jet Propulsion system |                                                                                |       |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------|-------|--|
| Module                                                | Contents                                                                       | No of |  |
| Name                                                  |                                                                                | Hrs   |  |
| Module 1                                              | Gas Turbines - Introduction, Classification, Applications. Gas Turbine and Its | 8     |  |
|                                                       | Components, Gas                                                                |       |  |
|                                                       | Turbine Power Plants. Optimum Pressure Ratio for Maximum Specific and          |       |  |
|                                                       | Thermal Efficiency in Actual Gas Turbine Cycle. Effect of Operating Variables  |       |  |
|                                                       | on Thermal Efficiency, Air Rate and Work Ratio.                                |       |  |
| Module 2                                              | Combustion Chamber- Types of Combustion Chamber, Factors Affecting             | 8     |  |
|                                                       | Combustion                                                                     |       |  |
|                                                       | Chamber Design, Combustion Processes, Combustion Chamber Performance,          |       |  |
|                                                       | Fuel Injection Systems. Axial Flow Turbines & Combustion Chamber-              |       |  |
|                                                       | Classification, Elementary Theory, Vortex Theory, Limiting Factors in Turbine  |       |  |
|                                                       | Design, Overall Turbine Performance, Design Performance of Gas Turbine         |       |  |
|                                                       | Plant, Matching of Turbine Components.                                         |       |  |
| Module 3                                              | Centrifugal Compressors- Prewhirling, Adiabatic Efficiency, Performance        | 10    |  |
|                                                       | Characteristics,                                                               |       |  |
|                                                       | Pressure Coefficient and Slip Factor, Losses, Surging, Compressor Design       |       |  |
|                                                       | Calculations, Mach Number.                                                     |       |  |
| Module 4                                              | Axial Flow Compressors- Principles of Operation, Simple Design Method, Blade   | 6     |  |
|                                                       | Design,                                                                        |       |  |
|                                                       | Calculation of Stage, Overall Performance, Compressor Characteristics, Mach    |       |  |
|                                                       | Number, Reynolds                                                               |       |  |
|                                                       | Number.                                                                        |       |  |
| Module 5                                              | Jet Propulsion- Turbo Jet, Turbo Prop, Ram Jet, Rocket Engines Thrust Power,   | 8     |  |
|                                                       | Propulsive                                                                     |       |  |
|                                                       | Efficiency and Thermal Efficiency, Jet Propulsion Performance, Specifying      |       |  |
|                                                       | Thrust and Specific Fuel Consumption in each case For Turbo Jet and Turbo      |       |  |
|                                                       | Propulsion Units.                                                              |       |  |
|                                                       | Total no of Hrs                                                                | 40    |  |
| Text and Re                                           | ference Books:                                                                 |       |  |

1. Gas Turbine Theory, Sarvanamatto, Cohen H, Rogers, Longmans Green.

2. Turbines, Compressors and Fans, S M Yahya, Tata McGraw Hill book Co., New Delhi.

3. Steam and Gas Turbines, R Yadav.

# Course outcomes:

Upon completion of this course the student will be able to:

1. Explain basic concepts of gas dynamics and describe the basic fundamental equations of one

dimensional flow of compressible fluid and isentropic flow of an ideal gas.

2. Analyze the steady one-dimensional is entropic flow, frictional flow and isothermal flow and express the concepts of steady one dimensional flow with heat transfer.

3. Discuss the effect of heat transfer on flow parameters.

4. Describe the jet propulsion engines

5. Describe the basic concepts of rocket propulsion

### SET/ME/BT/E804 Solar Thermal Power Engineering

#### **Course objectives:**

The objective of the course is to

1. Develop a detailed understanding of design and evaluation solar thermal power plants.

#### 2. Provide economic analysis and implementation of solar thermal power projects.

| SET/ME/BT/E804 Solar Thermal Power Engineering                                      |                                                                                                    |              |  |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------|--|
| Module Name                                                                         | Contents                                                                                           | No of<br>Hrs |  |
| ENERGY                                                                              | World energy resources - Indian energy scenario - Environmental aspects of energy                  | 8            |  |
| RESOURCES                                                                           | utilization. Renewable energy resources and their importance - Global solar                        |              |  |
| AND SOLAR                                                                           | resources. Solar spectrum - Electromagnetic spectrum, basic laws of radiation.                     |              |  |
| SPECTRUM                                                                            | Physics of the Sun - Energy balance of the earth, energy flux, solar constant for                  |              |  |
|                                                                                     | earth, green house effect.                                                                         |              |  |
| SOLAR                                                                               | Solar radiation on the earth surface - Extraterrestrial radiation characteristics,                 | 8            |  |
| RADIATION                                                                           | Terrestrial radiation, solar insolation, spectral energy distribution of solar radiation.          |              |  |
| AND                                                                                 | Depletion of solar radiation - Absorption, scattering. Beam radiation, diffuse and                 |              |  |
| MEASUREMENT                                                                         | Global radiation. Measurement of solar radiation – Pyranometer, Pyrheliometer,                     |              |  |
|                                                                                     | Sunshine recorder. Solar time - Local apparent time (LAT), equation of time (E).                   |              |  |
| SOLAR                                                                               | Solar radiation geometry - Earth-Sun angles – Solar angles. Calculation of angle of                | 10           |  |
| RADIATION                                                                           | incidence – Surface facing due south, horizontal, inclined surface and vertical                    |              |  |
| GEOMETRY                                                                            | surface. Solar day length – Sun path diagram – Shadow determination. Estimation                    |              |  |
| AND                                                                                 | of Sunshine hours at different                                                                     |              |  |
| CALCULATIONS                                                                        | places in India. Calculation of total solar radiation on horizontal and tilted surfaces.           |              |  |
|                                                                                     | Prediction of solar radiation availability.                                                        |              |  |
| SOLAR                                                                               | Thermodynamic cycles – Carnot – Organic, reheat, regeneration and supercritical                    | 6            |  |
| THERMAL                                                                             | Rankine cycles – Brayton cycle – Stirling cycle – Binary cycles – Combined cycles.                 |              |  |
| ENERGY                                                                              | Solar thermal power plants - Parabolic trough system, distributed collector, hybrid                |              |  |
| CONVERSION                                                                          | solar-gas power plants, solar pond based electric-power plant, central tower receiver power plant. |              |  |
| SOLAR                                                                               | Solar photovoltaic energy conversion - Principles - Physics and operation of solar                 | 8            |  |
| ELECTRICAL                                                                          | cells. Classification of solar PV systems, Solar cell energy conversion efficiency, I-             |              |  |
| ENERGY                                                                              | V characteristics, effect of variation of solar insolation and temperature, losses.                |              |  |
| CONVERSION                                                                          | Solar PV power plants.                                                                             |              |  |
|                                                                                     | Total no of Hrs                                                                                    | 40           |  |
| Text and Reference                                                                  |                                                                                                    |              |  |
| 1. Foster .R, Ghassen                                                               | II M., Cota A., "Solar Energy", CKC Press, 2010.                                                   |              |  |
| 2. Duffie .J.A, Beckm                                                               | an w.A. "Solar Engineering of Thermal Processes", 3rd ed.,                                         |              |  |
| wiley, $2006$ .                                                                     | - two in a f S - to France Commine " Wiley VCH 2009                                                |              |  |
| 5. De Vos .A, Therm                                                                 | L "Salar Energy Conversion, whey-VCH, 2008.                                                        |              |  |
| 4. Garg .H.P. Prakash                                                               | .J, Solar Energy Fundamentals and Applications, Tata                                               |              |  |
| McGraw-Hill, 2005.                                                                  | n En anna En aina air a' Duanna an d Cantana Elancian                                              |              |  |
| 5. Kalogirou .S, "Solar Energy Engineering", Processes and Systems, Elsevier, 2009. |                                                                                                    |              |  |
| 6. Petela .R, "Engineering Thermodynamics of Thermal Radiation for Solar Power",    |                                                                                                    |              |  |
| McGraw-Hill Co., 2010.                                                              |                                                                                                    |              |  |
| 7. Yogi Goswami .D, Frank Kreith, Jan F. Kreider, "Principles of Solar              |                                                                                                    |              |  |
| Engineering", Second                                                                | l Edition, Taylor & Francis, 2003.                                                                 |              |  |
| 8. Andrews .J, Jelley                                                               | N, "Energy Science", Oxford University Press, 2010.                                                |              |  |
|                                                                                     |                                                                                                    |              |  |

#### Course outcomes:

After completing this course, a student will be able to:

1. Develop a comprehensive understanding on different collector technologies and their comparative performance characteristics.

2. Design a solar thermal power plant through appropriate selection of collector, receiver, power cycles, heat transfer fluid and tracking mechanism.

3. Carry out the economic analysis of a solar thermal power plant and develop understanding on implementation process of a solar thermal power project.

### SET/ME/BT/E805 Experimental Stress Analysis

### **Course objectives:**

To bring awareness on experimental method of finding the response of the structure to different types of load.

1. Recognize the various techniques available to measure the stress and Strains using different sources.

- 2. Realize the working of recording instruments and data logging methods.
- 3. Distinguish the principles of photo elasticity in two dimensional stress analyses.

|              | SET/ME/BT/E805 Experimental Stress Analysis                                    |       |
|--------------|--------------------------------------------------------------------------------|-------|
| Module Name  | Contents                                                                       | No of |
|              |                                                                                | Hrs   |
| STRAIN       | Various types of strain gauges, Electrical Resistance strain gauges, Gage      | 8     |
| MEASUREMENT  | Sensitivity and Gage Factor Semiconductor strain gauges, Temperature           |       |
| METHODS AND  | compensation, strain gauge circuits.                                           |       |
| ANALYSIS OF  | Three Element Rectangular Rosette, Delta Rosette, strain gauge rosette.        |       |
| STRAIN GAGE  |                                                                                |       |
| DATA         |                                                                                |       |
| RECORDING    | Introduction, static recording and data logging, dynamic recording at very     | 8     |
| INSTRUMENTS  | low Frequencies, dynamic recording at intermediate frequencies, dynamic        |       |
|              | recording at high Frequencies, dynamic recording at very high frequencies.     |       |
|              | recording to high records, africante recording to very high requested.         |       |
| BRITTLE      | Brittle Coatings: Introduction, coating stresses, failure theories, brittle    | 10    |
| COATINGS and | coating crack patterns, crack detection, ceramic based brittle coatings, resin |       |
| BIREFRINGENT | based brittle coatings, test procedures for brittle coatings analysis,         |       |
| COATINGS     | calibration procedures, analysis of brittle coating data.                      |       |
|              | Birefringent Coatings: Introduction, Coating stresses and strains, coating     |       |
|              | sensitivity, coating materials, application of coatings, effects of coating    |       |
|              | thickness, Fringe-order determinations in coatings, stress separation method   |       |
|              | Undercoating.                                                                  |       |
| MOIRE        | Introduction, mechanism of formation of Moire fringes, the geometrical         | 6     |
| METHODS      | approach to Moire-Fringe analysis, displacement field approach to Moire-       | -     |
|              | Fringe analysis, out of plane displacement measurements, out of plane slope    |       |
|              | measurements, sharpening and multiplication of Moire-Fringes.                  |       |
|              | experimental procedure and techniques.                                         |       |
| РНОТО        | Introduction Polariscope – Plane and circularly polarized light, Bright and    | 8     |
| ELASTICITY   | dark field setups Isochromatic Fringe Patterns Isoclinic Fringe Patterns       | Ū     |
|              | Compensation Techniques Calibration Methods Separation Methods Shear           |       |
|              | Difference Method Materials for Two Dimensional Photo elasticity               |       |
|              | Total no of Hrs                                                                | 40    |

#### **Text and Reference Books:**

1. Experimental stress analysis, (Third Edition) by James Dally and Riley, Mc Graw-Hill International, New Delhi.1978.

2. Experimental stress analysis, (6th edition) by Dr. Sadhu Singh, KhannaPublishers, New Delhi, 1996.

3. A treatise on Mathematical theory of Elasticity, by Augustus Edward Hough Love, University Press, fourth edition, 1906.

4. Experimental stress analysis principles and methods, by G.S. Holister, Cambridge university press, 1967.

5. Theory of Elasticity, (Third Edition), S. Timoshenke and JN. Goodier McGraw-Hill, New York ,1970.

**Course outcomes:** 

Upon completion of this course the student will be able to:

1. Understand the overall concepts of stress/strain analysis by experimental means.

2. Familiar with the theory and practice of common experimental stress analysis Methods including moire methods, photo elasticity.

3. Acquire the knowledge on Brittle and bi-refrigent coatings and working of strain gauges.

### SET/ME/BT/OE806 Composite Material

#### **Course objectives:**

1. To study the behaviour of composite materials.

2. To investigate the failure modes of composite materials.

3. To understand the fracture mechanics of composite materials.

| SET/ME/BT/OE806 COMPOSITE MATERIAL  |                                                                                                                                                                                                                                                                                            |       |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Module Name                         | Contents                                                                                                                                                                                                                                                                                   | No of |
|                                     |                                                                                                                                                                                                                                                                                            | Hrs   |
| Introduction                        | Introduction, Current and potential advantages of fibre reinforced                                                                                                                                                                                                                         | 8     |
|                                     | automotive and commercial applications                                                                                                                                                                                                                                                     |       |
| Fibers, matrices and fillers        | Glass, Graphite, Aramid, Poletyhylene Fibers, Ceramic Fibres, Composite<br>Fibres, SiC Whisker, SiC Particle, polymer matrix materials                                                                                                                                                     | 7     |
| Manufacturing of composites         | Production Techniques of MMC, Polymer Matrix composites (PMCs),<br>Production of(PMCs), Ceramic matrix Composites (CMCs), production<br>techniques, Carbon-carbon Composites(CCCs), Production Chemical<br>Vapor Deposition, Pyrolysis Using thermosets, Pyrolysis Using<br>Thermoplastics | 10    |
| Mechanics of<br>Composite Materials | Continuous Fibers, Iso stress condition, Iso strain condition, Stress Vs<br>Strain Critical Volume fraction of fiber, Minimum volume fraction of fibre<br>discontinuous fibers, Creep of composites Fatigue of Composites, Fracture<br>Toughness Testing and inspection.                   | 6     |
| Recent developments                 | Self healing composites, Molecular Composites, Micro Composites, Nano<br>Composites, Left Handed Composite Materials, Stiffer Than stiff<br>Composites, Quick step process for PMCs, Biocomposites , Complex<br>Composites.                                                                | 9     |
| Total no of Hrs                     |                                                                                                                                                                                                                                                                                            | 35    |

### **Text and Reference Books:**

- 1. Ronald F. Gibson, Principles of composite material mechanics, CRC Press, 2011.
- 2. Robert M Jones, Mechanics of Composite Materials, Taylor & Francis, 2000.
- 3. Lawrence E. Nielsen, Nielson, Paul Nielsen, Mechanical Properties of Polymers and Composites, Second Edition, CRC press, 2000

### **Course outcomes:**

At the end of the course student will be able

- 1. Apprehend the stress strain relationship of orthotropic and anisotropic materials.
- 2. Analyze laminated composites.
- 3. Assess the failure criterion and fracture mechanics of composites

# SET/ME/BT/OE807

# **Computer Integrated Manufacturing Systems**

#### **Course objectives:**

1. Students will be introduced to CAD/CAM/CAE concepts.

2. Student will learn steps in upgrading from FMS to CIM.

3. Students will learn about importance of data generation and management in CIMS.

| SET/ME/BT/OE807 Computer Integrated Manufacturing Systems |                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Module Name                                               | Contents                                                                                                                                                                                                                                                                                                                                                                                                                         | No of<br>Hrs |
| Module 1                                                  | Introduction - Production Systems Facilities, Automation in Production<br>Systems, Manual<br>Labor in Production Systems, Automation Principles and Strategies;<br>Manufacturing Operations, Production Concepts and Mathematical Models,<br>Cost of Manufacturing Operations.                                                                                                                                                   | 8            |
| Module 2                                                  | Group Technology and Cellular Manufacturing, Parts Classification and<br>Coding, Production<br>Flow Analysis, Cellular Manufacturing. Industrial Robotics: Robot<br>Anatomy and Related Attributes, Robot Control Systems, Robot<br>Applications.                                                                                                                                                                                | 7            |
| Module 3                                                  | Definition and Broad Characteristics of Flexible Manufacturing Cells,<br>Systems, Flexible<br>Transfer Lines, Place of Flexible Manufacturing Systems in CIM,<br>Economics and Technological Justification for FMS, Design and Planning,<br>Role of Associated Technologies such as GT, JIT and Simulation,<br>Operation and Evaluation, Scheduling Problems, FMS Hardware, Control<br>Aspects of FMS, Flexible Machining Cells. | 10           |
| Module 4                                                  | Introduction to Material Handling, Material Transport Systems, Storage<br>SystemsConventional / Automated Storage Systems, Automatic<br>Identification Methods.                                                                                                                                                                                                                                                                  | 6            |
| Module 5                                                  | Shop Floor Control – Functions, Order Release, Order Scheduling, Order Progress,         Factory         Data Collection Systems, Corrective Actions                                                                                                                                                                                                                                                                             | 9            |
|                                                           | Total no of Hrs                                                                                                                                                                                                                                                                                                                                                                                                                  | 35           |

# **Text and Reference Books:**

1. Groover, M. P.-Automation Production Systems and Computer Integrated Manufacturing, Pearson

Education Asia, Delhi.

2. Zeid, I. - CAD/CAM - Theory and Practice, Tata McGraw Hill, New Delhi.

3. Ranky, P. G. -Computer Integrated Manufacture, Prentice-Hall International, UK.

4. Rao, P. N. - CAD/CAM, Tata McGraw Hill, New Delhi.

5. Craig, J. J. - Introduction to Robotics: Mechanics and Control, Addison-Wesley, New York.

## **Course outcomes:**

- 1. Students will be able to apply knowledge about Computer Aided Quality control and Process Planning Control.
- 2. Students will be able to Design Flexible manufacturing cell after carrying out Group technology study and finally creating FMS.
- 3. Students will be able to apply knowledge about various methods of communication in CIMS.
- 4. They will able apply data management and its importance for decision making in CIMS environment.

### SET/ME/BT/OE808 OPTIMIZATION TECHNIQUES IN ENGINEERING

### **Course objectives:**

The students will try to learn:

1. Operation research models using optimization techniques based upon the fundamentals of engineering mathematics (minimization and Maximization of objective function).

2. The problem formulation by using linear, dynamic programming, game theory and queuing models.

3. The stochastic models for discrete and continuous variables to control inventory and simulation of manufacturing models for the production decision making.

4. Formulation of mathematical models for quantitative analysis of managerial problems in industry.

#### **Course outcomes:**

1. Recall the theoretical foundations of various issues related to linear programming modeling to formulate real-world problems as a L P model.

2. Explain the theoretical workings of the graphical, simplex and analytical methods for making effective

| SET/ME/BT/OE808 OPTIMIZATION TECHNIQUES IN ENGINEERING |                                                                        |           |
|--------------------------------------------------------|------------------------------------------------------------------------|-----------|
| Module Name                                            | Contents                                                               | No of Hrs |
| Linear                                                 | Introduction and formulation of models, Convexity, Simplex method,     | 8         |
| Programming                                            | Big-M method, Two-phase method, Degeneracy, non-existent and           |           |
|                                                        | unbounded solutions, revised simplex method,                           |           |
| Linear Part                                            | Duality in LPP, dual simplex method, sensitivity analysis,             | 7         |
| Programming                                            | transportation and assignment problems, traveling salesman problem.    |           |
| Nonlinear                                              | Introduction and formulation of models, Classical optimization         | 10        |
| Programming:                                           | methods, equality and inequality constraints, Lagrange multipliers and |           |
|                                                        | Kuhn-Tucker conditions, quadratic forms, quadratic programming         |           |
|                                                        | problem, Wolfe's method.                                               |           |
| Dynamic                                                | Principle of optimality, recursive relations, solution of LPP          | 6         |
| Programming                                            |                                                                        |           |
| Integer Linear                                         | Gomory's cutting plane method, Branch and bound algorithm,             | 9         |
| Programming                                            | Knapsack problem, linear 0-1 problem                                   |           |
|                                                        | Total no of Hrs                                                        | 35        |

#### Text and Reference Books:

- 1. Kanti Swarup, Man Mohan and P.K.Gupta, Introduction to Operations Research, S.Chand & Co., 2006
- 2. J.C.Pant, Introduction to Operatins Research, Jain Brothers, New Delhi, 2008.
- 3. N.S.Kambo : Mathematical Programming Techniques, East-West Pub., Delhi, 1991.

decision on variables so as to optimize the objective function.

3. Identify appropriate optimization method to solve complex problems involved in various industries.

4. Demonstrate the optimized material distribution schedule using transportation model to minimize total distribution cost.

#### SET/ME/BT/OE809 Biomedical Engineering

#### **Course objectives:**

1. To introduce the field of biomedical engineering and role of biomedical engineers in society.

2. To impart knowledge on principles of various diagnostic, therapeutic equipment.

3. Achieve familiarity with some basic ethical framework and medical standards to be followed in hospitals.

| SET/ME/BT/OE809 Biomedical Engineering |          |       |  |
|----------------------------------------|----------|-------|--|
| Module Name                            | Contents | No of |  |
|                                        |          | Hrs   |  |

| Introduction         | Historical Perspective-Evolution of modern healthcare system-Role of           | 8  |
|----------------------|--------------------------------------------------------------------------------|----|
|                      | Biomedical engineers in various domain -Professional status of biomedical      |    |
|                      | engineering-General constraints in design of medical instrumentation           |    |
|                      | systems                                                                        |    |
| Fundamentals of      | Anatomy and Physiology – Sources of biomedical signals- basic medical          | 7  |
| Medical              | instrumentation system-General block of medical instrumentation system -       |    |
| Instrumentation      | Performance requirements –General constraints in design of medical             |    |
|                      | instruments.                                                                   |    |
| Diagnostic Imaging   | X-rays, Nuclear Medical Imaging-Positron Emission Tomography-                  | 10 |
|                      | Magnetic Resonance Imaging Scanners-Diagnostic Ultrasound- Thermal             |    |
|                      | imaging systems                                                                |    |
| Introduction to      | ECG - EEG - Cardiac Pacemakers - Cardiac Defibrillators -                      | 6  |
| Biomedical           | Haemodialysis Machines-Artificial KidneyDialyzers- Ventilators-                |    |
| Equipment            | Humidifiers, Nebulizers and Aspirators- Anaesthesia Machine.                   |    |
| Medical Safety       | Medical standards and regulations - Institutional Review Boards - Good         | 9  |
| Standards and        | Laboratory Practices -Good Manufacturing Practices -Human factors.             |    |
| Ethical Practices in | Morality and Ethics-A Definition of terms, Human Experimentation-Ethical       |    |
| Health Care          | issues in feasibility studies, Ethical issues in emergency use, Ethical issues |    |
|                      | in treatment use-Codes of ethics for bio engineers.                            |    |
|                      | Total no of Hrs                                                                | 35 |

#### **Text and Reference Books:**

1. Enderle, John D, Bronzino, Joseph D, Blanchard, Susan M- Introduction to Biomedical Engineering-ElsevierInc2ndedition,2005.

2. R. S. Khandpur, Handbook of Biomedical Instrumentation, McGraw-Hill Publishing Company Limited, 2ndedition,2003.

3. Leslie Cromwell, Fred J. Weibell, Erich A. Pfeiffer, Biomedical Instrumentation and Measurement, Prentice Hall of India, New Delhi,2nd edition, 2002

4. Joseph. J Carr, John M Brown, Introduction to Biomedical Equipment Technology, John Wiley& Sons, New York,4th edition, 2008

#### **Course outcomes:**

The Student will be able to

1. Interpret the role of biomedical engineering in society.

2. Demonstrate the principles of various diagnostic devices.

3. Identify the various techniques used in diagnosis though imaging.

4. Describe the working principles of various therapeutic and assist devices.

5. Understand device specific safety goals and standards.

6. Illustrate the concepts of ethical theories and moral principles for the health professions.